Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Testing for proteins, sugars, starch and lipids (OCR A-level Biology)
GJHeducationGJHeducation

Testing for proteins, sugars, starch and lipids (OCR A-level Biology)

(0)
This lesson describes the chemical tests for proteins, reducing and non-reducing sugars, starch and lipids and explains how to interpret the results. The PowerPoint and accompanying resource have been designed to cover point 2.1.2 (q) of the OCR A-level Biology A specification. The lesson begins with an explanation of the difference between a qualitative and quantitative test so that the students recognise that the four tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests at GCSE so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions and prior knowledge checks are included at appropriate points to ensure understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The next part of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix. The rest of the lesson describes the steps in the biuret test for proteins and the emulsion test for lipids. The students will learn that the addition of sodium hydroxide and then copper sulphate will result in a colour change from light blue to lilac if a protein is present and that following the addition of a sample to ethanol and then water, a cloudy emulsion is observed if a lipid is present.
Selective reabsorption (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Selective reabsorption (Edexcel Int. A-level Biology)

(0)
This lesson describes how solutes are selectively reabsorbed in the proximal tubule. The PowerPoint and accompanying resource have been designed to cover the first part of specification point 7.20 of the Edexcel International A-level Biology specification and builds on the knowledge gained in the previous lessons on the microscopic structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water.
Urea production & ultrafiltration (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Urea production & ultrafiltration (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes how urea is produced from excess amino acids and then removed from the bloodstream by ultrafiltration. The PowerPoint and accompanying resources have been designed to cover point 7.19 of the Edexcel International A-level Biology specification. The first part of the lesson describes how deamination and the ornithine cycle forms urea. Although the students are not required to know the details of the cycle, it is important that they are aware of how the product of deamination, ammonia, is converted into urea (and why). Moving forwards, the rest of the lesson has been written to allow the students to discover ultrafiltration as a particular function of the nehron and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem
Topic 1: Lifestyle, health and risk (Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 1: Lifestyle, health and risk (Edexcel A-level Biology A)

9 Resources
As the 1st topic on the Pearson Edexcel A-level Biology A (Salters Nuffield) course, the Lifestyle, health and risk topic is extremely important to introduce the students to the detail needed for success in this subject. Extensive planning has gone into all 9 of the lessons included in this bundle to motivate and engage the students whilst covering the following specification points: The importance of water The structure and function of blood vessels The cardiac cycle and the relationship between the structure and operation of the heart to its function The blood clotting process The differences between monosaccharides, disaccharides and polysaccharides The structure and role of the monosaccharides Understand how monosaccharides join to form disaccharides and polysaccharides through condensation reactions and are split through hydrolysis reactions The relationship between the structure and roles of the polysaccharides The synthesis of a triglyceride by the formation of ester bonds between glycerol and fatty acids The difference between saturated and unsaturated lipids The PowerPoints and accompanying resources contain a wide variety of tasks which include exam-style questions with mark schemes, guided discussion points and quick quiz competitions.
Positive & negative feedback (Edexcel A-level Biology A)
GJHeducationGJHeducation

Positive & negative feedback (Edexcel A-level Biology A)

(0)
This lesson explains how negative feedback control maintains systems within narrow limits and uses biological examples to describe the meaning of positive feedback. The PowerPoint and accompanying resources have been designed to cover points 7.11 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but have been planned to provide important details for upcoming topics such as the importance of homeostasis during exercise and the depolarisation of a neurone. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from topics 1 - 6 as well as earlier in topic 7 to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, so that students are prepared for an upcoming lesson on exercise, as well as for the next part of the lesson on negative feedback control. Students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
Transcription factors, the lac operon & DELLA proteins (CIE A-level Biology)
GJHeducationGJHeducation

Transcription factors, the lac operon & DELLA proteins (CIE A-level Biology)

(0)
This lesson describes the function of transcription factors in eukaryotes and uses the lac operon to explain the control of protein production in a prokaryote. The detailed PowerPoint and accompanying resources have been designed to cover points 16.3 (b, c & d) as detailed in the CIE A-level Biology specification and also includes a description of how gibberellin breaks down DELLA protein repressors, allowing transcription to be promoted. This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in topic 6, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promoter region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.
Meiosis and genetic variation (CIE A-level Biology)
GJHeducationGJHeducation

Meiosis and genetic variation (CIE A-level Biology)

(0)
This lesson describes the behaviour of chromosomes during meiosis, focusing on the events which contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover points 16.1 (a, d & e) of the CIE A-level Biology specification and explains how crossing over, the random assortment and the random fusion of haploid gametes leads to variation. In order to understand how the events of meiosis like crossing over and independent assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent assortment and segregation of chromosomes and chromatids during metaphase I and II and anaphase I and II respectively results in genetically different gametes. The key events of all of the 8 phases are described and there is a focus on key terminology to ensure that students are able to describe genetic structures in the correct context. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam-style questions which challenge the students to apply their knowledge to potentially unfamiliar situations. This lesson has been specifically planned to link to the two lessons on the cell cycle and the main stages of mitosis as covered in topic 5 and constant references are made throughout to encourage students to make links and also to highlight the differences between the two types of nuclear division
Biuret & emulsion tests & TOPIC 2 REVISION (CIE A-level Biology)
GJHeducationGJHeducation

Biuret & emulsion tests & TOPIC 2 REVISION (CIE A-level Biology)

(0)
This lesson describes the biuret and emulsion tests for proteins and lipids respectively and then acts as a revision lesson for topics 2.2 and 2.3. The engaging PowerPoint and accompanying resources have been designed to be taught at the end of topic 2 and uses a range of activities to challenge the students on their knowledge of that topic, but also covers the second part of point 2.1 (a) of the CIE A-level Biology specification when the qualitative tests are described. The first section of the lesson describes the steps in the biuret test and challenges the students on their recall of the reducing sugars and starch tests from topic 2.1 to recognise that this is a qualitative test that begins with the sample being in solution. The students will learn that the addition of sodium hydroxide and then copper sulphate will result in a colour change from light blue to lilac if a protein is present. The next part of the lesson uses exam-style questions with displayed mark schemes, understanding checks and quick quiz competitions to engage and motivate the students whilst they assess their understanding of this topic. The following concepts are tested during this lesson: The general structure of an amino acid The formation of dipeptides and polypeptides through condensation reactions The primary, secondary, tertiary and quaternary structure of a protein Biological examples of proteins and their specific actions (e.g. antibodies, enzymes, peptide hormones) Moving forwards, the lesson describes the key steps in the emulsion test for lipids, and states the positive result for this test. There is a focus on the need to mix the sample with ethanol, which is a distinctive difference to the tests for reducing sugars and starch and proteins. The remainder of the lesson uses exam-style questions with mark schemes embedded in the PowerPoint, understanding checks, guided discussion points and quick quiz competitions to challenge the following specification points: The structure of a triglyceride The relationship between triglyceride property and function The hydrophilic and hydrophobic nature of the phospholipid The phospholipid bilayer of the cell membrane Cholesterol is also introduced so that the students are prepared for this molecule when it is met in topic 4 (cell membranes) This is an extensive lesson and it is estimated that it will take in excess of 2 hours of allocated teaching time to cover the detail and the different tasks
Limiting factors of photosynthesis (CIE A-level Biology)
GJHeducationGJHeducation

Limiting factors of photosynthesis (CIE A-level Biology)

(0)
This lesson explains the effects of light intensity, carbon dioxide concentration and temperature (limiting factors) on the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover points 13.2 (a, b & c) of the CIE A-level Biology specification and also considers how knowledge of these limiting factors can be used to increase crop yields in the protected environment of a greenhouse. The lesson has been specifically written to tie in with the previous lessons in topic 13.1 which covered the structure of the chloroplast, the light-dependent reactions and the light-independent reactions. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, TP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions. The final part of the lesson provides details of the World’s largest rooftop greenhouse in Montreal and challenges their knowledge of related topics such as cellulose structure, pollination and biological control.
Classification (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Classification (Edexcel Int. A-level Biology)

(0)
This lesson describes classification as a means of organising the variety of life based on relationships between organisms. The engaging PowerPoint and accompanying resource have been designed to cover point 4.14 (i) of the Edexcel International A-level Biology specification and focuses on the classification hierarchy where species is the lowest taxon but also describes the binomial naming system which uses the genus and species. The lesson also contains links to the next lesson where molecular phylogeny is described and the three-domain system is covered in greater detail with a focus on the results of Carl Woese’s rRNA study The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Moving forwards, students will learn that classification is a means of organising the variety of life based on relationships between organisms using differences and similarities in phenotypes and in genotypes and is built around the species concept and that in the modern-day classification hierarchy, species is the lowest taxon. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn (or recall) the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.
Haemoglobin vs myoglobin (Edexcel A-level Biology B)
GJHeducationGJHeducation

Haemoglobin vs myoglobin (Edexcel A-level Biology B)

(0)
This lesson describes the similarities and differences between the structure and function of haemoglobin and myoglobin. The PowerPoint and accompanying resource have been designed to cover point 4.5 (iii) of the Edexcel A-level Biology B specification Students have already covered the structure and function of haemoglobin in topics 1.3 and 4.5, so this concise lesson has been planned to challenge that knowledge. Students are introduced to myoglobin and will learn that this is an oxygen-binding protein found in the skeletal muscle tissue. Therefore the first part of the lesson focuses on slow twitch muscle fibres, where the content of myoglobin is high, and this presents an opportunity for links to be made to respiration, mitochondria and capillaries. The main part of the lesson challenges the students to compare the two proteins on structure and function including the number of polypeptide chains and affinity for oxygen and students can assess their understanding through use of the displayed mark schemes to the series of exam-style questions.
Topics 17 & 18: Selection, evolution, biodiversity & classification (CIE A-level Biology)
GJHeducationGJHeducation

Topics 17 & 18: Selection, evolution, biodiversity & classification (CIE A-level Biology)

16 Resources
The topics of selection, evolution, biodiversity, classification and conservation are key concepts in Biology, that are regularly assessed in the exams, but are not always that well understood by the students. With this at the forefront of the lesson design, these 16 lesson PowerPoints and their accompanying resources have been intricately planned to cover the detailed content of topics 17 & 18 of the CIE A-level Biology specification through the use of a wide range of tasks to engage and motivate the students. There are plenty of opportunities for the students to assess their current understanding through the completion of exam-style questions and also to check on their prior knowledge by making links to earlier topics. The following specification points are covered by these lessons: Topic 17.1: Variation The differences between continuous and discontinuous variation Using the t-test to compare the variation of two different populations The importance of genetic variation in selection Topic 17.2: Natural and artificial selection Natural selection Explain how environmental factors can act as stabilising, disruptive and directional forces of natural selection Explain how the founder effect and genetic drift may affect allele frequencies in populations Use the Hardy-Weinberg principle Topic 17.3: Evolution The molecular evidence that reveals similarities between closely related organisms Explain how speciation may occur Topic 18.1: Biodiversity Define the terms species, ecosystem and niche Explain that biodiversity is considered at three levels Explain the importance of random sampling in determining the biodiversity of an area Use suitable methods to assess the distribution and abundance of organisms in a local area Use the Spearman’s rank correlation to analyse relationships between data Use Simpson’s index of diversity Topic 18.2: Classification The classification of species into taxonomic hierarchy The characteristic features of the three domains The characteristic features of the kingdoms Explain why viruses are not included in the three domain classification Topic 18.3: Conservation The reasons for the need to maintain biodiversity Methods of protecting endangered species The roles of organisations like the WWF and CITES in local and global conservation If you would like to sample the quality of the lessons that are included in this bundle then download the following as these have been shared for free: Continuous and discontinuous variation Molecular evidence & evolution Spearman’s rank correlation WWF, CITES and conservation It is estimated that it will take up to 2 months of A-level Biology teaching time to cover the detail included in these lessons
Cell structure and organisation (WJEC A-level Biology)
GJHeducationGJHeducation

Cell structure and organisation (WJEC A-level Biology)

4 Resources
This lesson bundle contains 4 lessons which are highly detailed and engaging. Hours of planning has gone into these lessons to ensure that the wide range of activities cover the following specification points in AS unit 1, topic 2 (Cell structure and organisation) of the WJEC A-level Biology specification: The structure and function of the organelles found in animal and plant eukaryotic cells The structure of prokaryotic cells and viruses The levels of organisation, including the aggregation of cells into tissues, tissues into organs, and organs into organ systems As well as covering the detailed A-level content, the guided discussion points, differentiated tasks and quiz competitions will engage and motivate the students.
Structure and functions of organelles (WJEC A-level Biology)
GJHeducationGJHeducation

Structure and functions of organelles (WJEC A-level Biology)

(0)
This lesson describes the structure and functions of the organelles that are found in eukaryotic cells. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point (a) in AS Unit 1, topic 2 of the WJEC A-level Biology specification As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all 6 modules in the OCR course and intricate planning has ensured that links to the lessons earlier in AS unit 1 are made as well as to the upcoming topics in the other units. The lesson uses a wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, to maintain motivation and engagement whilst describing the relationship between the structure and function of the following organelles: nucleus nucleolus centrioles ribosomes rough endoplasmic reticulum Golgi body lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane vacuole chloroplasts plasmodesmata All of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to go through all of the tasks
The need to maintain biodiversity (CIE A-level Biology)
GJHeducationGJHeducation

The need to maintain biodiversity (CIE A-level Biology)

(0)
This lesson describes the reasons for the need to maintain biodiversity, which include those which are ecological, economic and aesthetic. The PowerPoint and accompanying resources have been designed to cover point 18.3 (b) of the CIE A-level Biology specification. Many hours of research have gone into the planning of the lesson so that interesting examples are included to increase the relevance of the multitude of reasons to maintain biodiversity. These include the gray wolves and beavers of Yellowstone National Park and the Za boabab in the Madagascar rainforests as examples of keystone species. Students will learn that these species have a disproportionate effect on their environment relative to their abundance and exam-style questions and guided discussion periods are used to challenge them to explain their effect on other species in the habitat. The CIE exams have a heavy mathematical content and this is reflected in this lesson as students are challenged to complete a range of calculations to manipulate data to support their biological-based answers. All of the exam questions that are included throughout the lesson have mark schemes embedded into the PowerPoint to allow the students to assess their progress. Moving fowards, the economic ans aesthetic reasons to maintain biodiversity are considered, and there is a focus on the soil depletion that occurs when a continuous monoculture is used. The 1 Billion tree scheme that began in New Zealand in 2018 is introduced and the reasons that some groups of people are objecting to what they consider to be a pine monoculture are discussed. Students will recognise that the clear felling of the trees dramatically changes the landscape and that the increased runoff that results can have catastrophic affects for both aquatic life and for humans with floods. A number of quiz competitions are included in the lesson to introduce key terms in a fun and memorable way and some of the worksheets have been differentiated to allow students of differing abilities to access the work
Topic 18.1: Biodiversity (CIE A-level Biology)
GJHeducationGJHeducation

Topic 18.1: Biodiversity (CIE A-level Biology)

3 Resources
The following specification points in topic 18.1 of the CIE A-level Biology specification are covered by these three lessons: [a] Define the terms species, ecosystem and niche [b] Explain that biodiversity is considered at three levels [c] Explain the importance of random sampling in determining the biodiversity of an area [d] Use suitable methods to assess the distribution and abundance of organisms in a local area [e] Use Spearman’s rank correlation [f] Use Simpson’s index of diversity The lessons are detailed, engaging and contain exam-style questions with mark schemes embedded in the PowerPoint to allow the students to apply and assess their understanding
Topic 8.2: Transfer of genetic information (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 8.2: Transfer of genetic information (Edexcel A-level Biology B)

6 Resources
Each of the 6 specification points in topic 8.2 of the Edexcel A-level Biology B specification are covered by the 6 lessons included in this bundle: (i) Understanding of the key genetic terms (ii) Be able to construct genetic crosses and pedigree diagrams (iii) Understand the inheritance of two non-interacting unlinked genes (iv) Understand that autosomal linkage results from the presence of alleles on the same chromosome (v) Understand sex linkage on the X chromosome (vi) Be able to use the chi squared test The lessons contain step by step guides that walk students through the key details of this topic, such as the construction of genetic crosses or the calculation of the chi squared value. There are also lots of exam-style questions to challenge the students to apply their understanding and the mark schemes that are embedded in the PowerPoints will allow them to assess their progress. The sex linkage lesson has been uploaded for free if you would like to sample the quality of lessons in this bundle.
Sampling plant species (OCR A-level Biology A)
GJHeducationGJHeducation

Sampling plant species (OCR A-level Biology A)

(0)
This lesson describes how random and non-random sampling strategies can be carried out to measure the biodiversity of a habitat. The PowerPoint and accompanying worksheets are part of the first lesson in a series of 2 which have been designed to cover the content of point 4.2.1 (b) (i) of the OCR A-level Biology A specification and this lesson specifically focuses on sampling plant species. The second lesson covers the sampling of animal species using apparatus such as pooters and sweeping nets. The lesson begins with a challenge, where the students have to recognise the terms random and stratified from descriptions that were met in modules 2.1.6 and 3.1.1. This introduces the concept of sampling and emphasises its importance in the measurement of biodiversity and the students will learn that there is random sampling as well as non-random sampling, and that one of these strategies is known as stratified. The next part of the lesson focuses on the random sampling of a habitat where the results found with a quadrat are used to estimate the population of sessile species like plants. Due to the heavy mathematical content in the A-level Biology exams, a step by step guide is used to walk the students through the key stages in these calculations and includes the extra steps needed when the quadrat does not have an area of 1 metre squared. A series of exam-style questions will then challenge them to apply their understanding and mark schemes are embedded in the PowerPoint to allow them to immediately assess their progress. The use of quadrats that have been divided into 100 squares and point frames to estimate percentage ground cover are also discussed and the overall advantages and disadvantages of random sampling are considered. Moving forwards, the stratified, opportunistic and systematic strategies of non-random sampling are discussed and again the advantages and disadvantages of all three are considered. Time is taken to focus on line and belt transects and students will learn that the latter can be particularly useful when an abiotic factor appears to change across a habitat.
Biodiversity at different levels and Simpson's Index of diversity (OCR A-level Biology)
GJHeducationGJHeducation

Biodiversity at different levels and Simpson's Index of diversity (OCR A-level Biology)

(0)
This lesson discusses how biodiversity may be considered at different levels and describes how to calculate Simpson’s Index of diversity. The PowerPoint and accompanying worksheets have primarily been designed to cover points 4.2.1 (a, c and d) of the OCR A-level Biology A specification but also make links to the upcoming topics of classification, natural selection and adaptations A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise species, population, biodiversity, community and natural selection from their respective definitions. Once biodiversity as the variety of living organisms in a habitat is revealed, the students will learn that this can relate to a range of habitats, from those in the local area to the Earth. Moving forwards, the students will begin to understand that biodiversity can be considered at a range of levels which include within a habitat, within a species and within different habitats so that they can be compared. Species richness as a measure of the number of different species in a community is met and a biological example in the rainforests of Madagascar is used to increase its relevance. However, students will also be introduced to species evenness and will learn that in order for a habitat to be deemed to be biodiverse, it must be both species rich and even. The students are introduced to an unfamiliar formula that calculates the heterozygosity index and are challenged to apply their knowledge to this situation, as well as linking a low H value to natural selection. The rest of the lesson focuses on the calculation of Simpson’s Index of diversity and a 4-step guide is used to walk students through each part of the calculation. This is done in combination with a worked example to allow students to visualise how the formula should be applied to actual figures. Using the method, they will then calculate a value of D for a comparable habitat to allow the two values to be considered and the significance of a higher value is explained. All of the exam-style questions have mark schemes embedded in the PowerPoint to allow students to continuously assess their progress and understanding.
Zoos and seed banks as conservation methods (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Zoos and seed banks as conservation methods (Edexcel Int. A-level Biology)

(0)
This lesson evaluates the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity. The PowerPoint and accompanying resources have been primarily designed to cover point 4.21 of the Edexcel International A-level Biology specification but as this is potentially the last lesson in this topic, lots of questions and activities have been included that will challenge the students on their knowledge and understanding of topic 4 (Plant structure and function, Biodiversity and Conservation). Hours of research went into the planning of this lesson to source interesting examples and although the main focus of the lesson is the zoo and seed banks as ex situ conservation methods, the lesson begins with a consideration of the importance of the in situ methods that are used in the Lake Télé Community reserve in the Republic of Congo and the marine conservation zone in the waters surrounding Tristan da Cunha. Students will learn how this form of active management conserves habitats and species in their natural environment, with the aim of minimising human impact whilst maintaining biodiversity. To enrich their understanding of ex situ conservation, the well-known examples of ZSL London zoo, Kew Gardens and the Millennium Seed Bank Project in Wakehurst are used. Students will understand how conserving animal species outside of their natural habitat allows for human intervention that ensures the animals are fed and given medical assistance when needed as well as reproductive assistance to increase the likelihood of the successful breeding of endangered species. An emphasis is placed on the desire to reintroduce the species into the wild and the example of some initial successes with the mountain chicken frog in Dominica and Montserrat is discussed. As stated in the specification point, these methods must be evaluated and therefore the issues are also considered and there is a focus on the susceptibility of captive populations to diseases as a result of their limited genetic diversity. The final part of the lesson considers how seed banks can be used to ensure that plant species, which may contain the molecules for medicine development, avoid extinction, and how the plants can be bred asexually to increase plant populations quickly. Due to the extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of allocated A-level teaching time to cover the tasks and content included in the lesson and as explained above, it can also be used as revision of topic 4 content