Hero image

524Uploads

214k+Views

114k+Downloads

Edges, vertices and faces
IETEducationIETEducation

Edges, vertices and faces

(0)
Making cut-out 3D shapes and counting the number of edges, vertices and faces In this fun maths activity for Key Stage 2, learners will enhance their knowledge and comprehension of 3D shapes. They will cut out 2D nets for a cube, pyramid, cylinder, and octahedron, then fold them to form their corresponding 3D shapes. Through this process, they will also determine and count the number of edges, vertices, and faces on each shape. This activity can serve as a main lesson to develop an understanding of the characteristics of common 3D shapes. Alternatively, it can be integrated into a broader curriculum that focuses on the properties of 2D shapes, 3D shapes, and everyday objects. The engineering context Engineers must regularly use mathematics knowledge and skills as part of their everyday job. Therefore, they must have a good grasp of basic concepts, such as the properties of 3D shapes. Suggested learning outcomes By the end of this activity, students will be able to make 3D shapes such as cubes, pyramids, cylinders and octahedrons from 2D nets, and they will understand the difference between the edges, vertices and faces of a 3D shape. They will know the number of edges, vertices and faces on a cube, pyramid, cylinder and octahedron. Download for activity sheets and templates for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Addition and subtraction worksheet
IETEducationIETEducation

Addition and subtraction worksheet

(0)
Solving addition and subtraction problems to crack the safe code This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on solving addition- and subtraction-based numeracy problems to find the code that will open a safe door. Do you have the maths knowledge to ‘crack the code’ and open the safe? Activity info, teachers’ notes and curriculum links In this activity, learners will solve three addition and subtraction problems. The answer to each problem will give two out of the six digits needed to crack the code to a safe. They will reinforce their addition and subtraction knowledge and apply this in a fun context. This activity could be used as a starter activity covering learning from the previous lesson, a plenary activity reinforcing learning that has just taken place, or as one of several activities within a wider scheme of learning focusing on addition and subtraction. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Remember, the downloads are all free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Tree trunk circumference
IETEducationIETEducation

Tree trunk circumference

(0)
Measuring the circumference of tree trunks and working out their age. They will then repeat this process with other trees and share their findings as a group. This exercise could serve as a main lesson activity to teach learners how to gather data through measurement and apply their numerical skills in a practical context. It could also be incorporated into a larger curriculum that emphasises the use of maths and science to comprehend the natural world. This is one of a set of free STEM resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on measuring the circumference of a tree trunk and using this information to calculate its age. Trees can be identified and measured in and around the school grounds as available. Appropriate safeguarding checks and risk assessments will need to be put in place by the teacher depending on where the measuring of the trees takes place. Taking the measurements may need two learners working as a pair or a group of three, one holding the end of the tape in place, the other wrapping around and taking the reading, optionally with a third recording the measurement. The measuring tape must be kept straight and level to give an accurate reading. This is a fun and practical exercise that will challenge learners’ maths and science skills and encourage them to think about the ways in which environmental engineers interact with the natural world. This activity will take approximately 40-60 minutes to complete. Tools/resources required Access to an outside area with trees Measuring tape Clipboards Calculators The engineering context As part of their daily job, engineers are obligated to frequently apply their mathematical knowledge and skills. Hence, it is imperative that they possess a thorough understanding of fundamental concepts, including measurement taking and interpretation. Environmental engineers are responsible for enhancing the quality of the surrounding natural environment. Their job performance improves as they expand their comprehension of it. Suggested learning outcomes By the end of this activity students will be able to measure the circumference of a tree, they will be able to calculate the age of a tree using its circumference and they will be able to communicate measurements using appropriate SI units. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Static electricity experiment (KS2)
IETEducationIETEducation

Static electricity experiment (KS2)

(0)
Using static electricity to make tissue paper cats ‘pounce’ onto a balloon This is one of a set of free STEM resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on making tissue paper cats ‘pounce’ and stick to a balloon through the build-up of static electricity. This activity could be used as a main activity to introduce the concept of static electricity, or as one of several activities within a wider scheme of learning focusing on electricity and its uses. Learners will first cut their tissue paper into small cat shapes. They could use different coloured tissue paper to make different coloured cats for more visual interest. Learners will then blow up and tie their balloons. The balloon should be blown up fully and tied so that no air can escape. If learners struggle to do this, the teacher could complete this step in advance. Alternatively, clips could be provided to seal the balloons. Learners will rub their balloon against their jumper several times to ‘charge’ it with static electricity. Following this, they can hold their balloon just above their tissue paper cat shapes. The cats should ‘pounce’ onto the balloon and stick to it. Why do you think the cats ‘pounce’ and stick to the balloon? How close does the balloon need to be for the cats to pounce? What is causing this to happen? This activity will take approximately 30-50 minutes to complete. Tools/resources required Balloons Tissue paper Scissors The engineering context Engineers use knowledge of science concepts in their everyday work to ensure they produce solutions that are safe, functional and meet the needs of their clients. A good grasp of basic concepts, such as how electricity and static electricity works, is therefore very important. Electrical engineers use their knowledge of how electricity works to develop new electrical products and systems. Suggested learning outcomes By the end of this activity students will have an understanding of the causes and effects of static electricity, they will understand how to use a balloon and a jumper to create static electricity and they will know that static electricity can be used to make paper stick to a balloon. Download the Static electricity experiment activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Balloon speakers
IETEducationIETEducation

Balloon speakers

(0)
In this simple STEM activity for kids learners will investigate how a balloon can be used as a simple speaker. They will blow up the balloon, tap it and listen to how to sounds travel through it. They will then discuss the outcome of their experiment and explain why the balloon speaker works in the way that it does. This activity could be used as a starter activity to introduce the concept of sound and how it travels, or as one of several activities within a wider scheme of learning focusing on sound. Activity: Balloon speakers This is one of a set of free resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on using a balloon as a simple speaker to amplify sound. What happens when you tap the balloon? What can you hear and feel? Why do you think this is happening? This is a quick and easy STEM activity that will take approximately 15 – 20 minutes. The engineering context Engineers must understand how speakers work in order to successfully design products that use them, such as phones, music players and TVs. Sound engineers must understand how sound can be amplified and transmitted from one place to another. For example, at a concert. Understanding how speakers work is a very important part of this. Suggested learning outcomes By the end of this exercise students will know that vibrations from sounds travel through a medium in the ear. They will also be able to use a balloon as a simple speaker and explain how it works. Lastly, they will understand how pushing air closely together affects the volume of sound travelling through it. Download the Balloon speakers activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Working drawings poster
IETEducationIETEducation

Working drawings poster

(0)
Secondary classroom poster where students can find out more about working drawings and how they are created. Download the single poster here or order a full set of posters for free from the IET Education website.
Voltage poster
IETEducationIETEducation

Voltage poster

(2)
Secondary classroom poster where students can learn about the concept of potential difference through analogy. Download the single poster or order a full set of posters for free from the IET Education website.
User centered design poster
IETEducationIETEducation

User centered design poster

(0)
Secondary classroom poster highlighting the design process focusing on the needs of the user at each stage. Download the single poster or order a full set of posters for free from the IET Education website.
The Bionic Body poster
IETEducationIETEducation

The Bionic Body poster

(0)
Secondary classroom poster highlighting some of the areas in which the human body can be improved with technology. Download the single poster or order a full set of posters for free from the IET Education website.
Systems thinking poster
IETEducationIETEducation

Systems thinking poster

(0)
Secondary classroom poster highlighting inputs, processes and outputs. Download the single poster or order a full set of posters for free from the IET Education website.
Save the Earth poster
IETEducationIETEducation

Save the Earth poster

(0)
Secondary classroom poster highlighting ideas we could all implement to help save our world. Download the single poster or order a full set of posters for free from the IET Education website.
Programmable components poster
IETEducationIETEducation

Programmable components poster

(0)
Secondary classroom poster looking at what programmable components are and where they are used. Download single poster or order a full set of posters for free from the IET Education website.
Power poster
IETEducationIETEducation

Power poster

(0)
Secondary classroom poster calculating mechanical and electrical power. Order a free set of secondary posters from the IET Website.
Nanotechnology poster
IETEducationIETEducation

Nanotechnology poster

(0)
Secondary classroom poster exploring nanotechnology in everyday life. Download the single poster or order a full set of posters for free from the IET Education website.
Modelling methods
IETEducationIETEducation

Modelling methods

(0)
Secondary classroom poster where students can find out how designers use models to understand how their ideas will look and function. Download the single poster or order a full set of posters for free from the IET Education website.
micro:bit poster
IETEducationIETEducation

micro:bit poster

(0)
Secondary classroom poster giving a quick look at the individual components of the BBC micro:bit and how you can use it in your classroom. Download the single poster or order a full set of posters for free from the IET Education website.
Maths for engineering poster
IETEducationIETEducation

Maths for engineering poster

(1)
Secondary classroom poster where your students can find out about the equations and formulae needed for engineering. Download the single poster or order a full set of posters for free from the IET Education website.
Maths for D&T poster
IETEducationIETEducation

Maths for D&T poster

(0)
Secondary classroom poster where your students can find out about the equations and formulae needed for D&T. Download the single poster or order the full set of posters for free from the IET Education website.
Future travel poster
IETEducationIETEducation

Future travel poster

(0)
Secondary classroom poster exploring the green solutions for future travel. Download or order a full set of posters for free from the IET Education website.