524Uploads
215k+Views
114k+Downloads
All resources
Design a model car and wheel axle
Design an experiment to test how long it takes a vehicle to move down a slope
In this series of activities, pupils will learn about nets and wheels and axles. They will combine these technologies to make the base and body for a vehicle made from card, finishing by evaluating the performance of the assembled vehicle.
This activity evaluates the performance of the vehicle previously manufactured by the pupils. It involves recording the time taken by each vehicle to go down a slope. This can be converted into the speed of the vehicle. It could be used at Key Stage 1 or 2 to develop an understanding of the use of testing and numeracy skills.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
Wind turbine calculations
Throughout this engaging activity designed for GCSE students, learners will face intriguing challenges that revolve around wind turbines, where their problem-solving skills will be tested using equations and systematic listing techniques.
By applying mathematical principles and systematic approaches, learners will uncover the secrets behind these sustainable energy marvels and gain a deeper appreciation for their significance in today’s world.
It is recommended to utilise a table format for displaying the values learners substitute into the equation, along with the corresponding outcomes, indicating whether they are too large or too small.
Problem Solving
Students will likely employ trial and improvement or a graphical method to tackle the first question. Some may also opt to utilise a spreadsheet for their calculations. To ensure the accuracy of their solutions up to two decimal places, they are encouraged to consider using a number line, which can aid in the verification process.
As for the final problem, students will need to adopt a systematic listing approach or explore other methodologies to ensure that every possible combination of gears has been thoroughly explored and tested.
This activity aims to empower students to approach challenges creatively and thoughtfully by providing various problem-solving techniques and strategies. This process will sharpen their mathematical abilities and cultivate critical thinking skills, enabling them to tackle complex problems with confidence and precision.
Discussion points
Promote active discussion among the students regarding the diverse approaches they have employed and how they can ensure the accuracy of their answers up to two decimal places. If students have not chosen the graphical approach to solve the problem, consider demonstrating it to the class.
Encourage a comparative analysis of the various methods used to address the subsequent problems and enquire about the students’ strategies to ensure they have explored all potential combinations of gears.
Potential GCSE content
This activity will cover using trial and improvement to solve an equation, calculations with fractions, ratios and systematic listing.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Exploded views poster
Primary classroom poster giving a closer look at exploded views and how you can draw them for yourself.
Download the single poster or order a full set of posters for free form the IET Education website.
Forces poster
Primary classroom poster explaining what forces are and how they act.
Download this single poster or order a full set of posters for free from the IET Education website.
Electrical and electronic symbols poster
Secondary classroom poster showing the common electrical and electronic symbols.
Download the single poster or order a full set of posters for free from the IET Education website.
Materials for design
Choosing materials for a new design
It is essential that products used in our everyday lives are fit for purpose. To design a product which will be useful to the customer it is important to understand how different products function and why different materials and components are suitable for different applications.
With this in mind, students will dismantle an engineering product to help them better understand its construction and function. They will then use this experience to create a test that will help in choosing which materials are fit for purpose when designing a new product.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in design and technology (DT). The lesson accompanies our Reverse engineering activity, which should ideally be completed before this lesson.
Activity: Choosing materials for a new design
In this activity students will be given a pair of headphones to dismantle (this must be done carefully, as the headphones will need reassembling afterwards!).
Using our Product investigation booklet, students will conduct a product analysis to investigate its construction. They will be asked to create a test that will help manufactures determine if different materials are fit for purpose to aid choosing materials for new designs.
The engineering context
Engineers may choose to review older products, or competitor products, in order to help them choose materials for certain design or engineering projects. These materials may be the same as what has already been used in what they’ve examined, or the examination may lead them towards producing superior materials.
Suggested learning outcomes
At the end of this lesson students will be able to effectively dismantle and investigate an engineered product to determine how it was made along with its function/purpose.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation.
Transportation problems
Solving transportation issues around the world
In this activity students will use what they know about community transport systems to suggest possible solutions to existing transportation problems.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Solving transportation issues around the world
Students will watch our short film on transportation planning, which will be the basis for a class discussion on the potential issues that come with holding major events in cities such as the Olympic Games.
Students will then work in teams to review a scenario from our Solving the transport problem worksheet, which includes various transport planning scenarios. Each team will choose a problem to solve and then present their solution to the class.
Finally, students will examine the negative consequences that inevitably come with improving community transport, considering environmental and social factors.
Download our activity overview for an introductory lesson plan on transportation issues for free!
The engineering context
Engineers must often solve transportation problems that can arise in big cities. Whether it’s designing traffic flow for megacities, building accessible infrastructure for rural areas, or integrating sustainable fuels, transportation planning equips engineers to tackle hazards, congestion, isolation, and inefficiency.
Suggested learning outcomes
This activity teaches students how to use community transport to solve social and environmental problems. It will also teach them how to explain the rationale behind these decisions.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation
Build a popsicle stick catapult
Develop an understanding of levers and build a popsicle stick catapult from craft sticks with this free STEM lesson plan.
This is an exciting and engaging way to learn about physics and engineering. With the right materials, build a simple yet effective catapult capable of launching chocolate eggs up into the air!
This lesson plan is perfect for KS3 students and can be used as a fun one-off main activity to introduce levers.
This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design & Technology, Mathematics and Science. This resource involves making a simple catapult which works as a lever to propel a chocolate or mini egg.
This activity will take approximately 50 – 70 minutes to complete.
Also included is a fun crossword using words from the activity to promote sticking learning.
Tools/resources required
Craft sticks (at least 7 per learner)
Small elastic bands (at least 7 per learner, plus spares)
A teaspoon (metal or plastic)
Chocolate mini eggs (or similar)
For the extension activity:
Pencils (or similar, such as dowel rods)
Elastic bands
The engineering context
Levers are one of the simplest machines and are used in many applications. These include pliers, scissors, brake pedals and wheels and axles. The principles of levers are also used in many applications when designing sports equipment, such as cricket bats, golf clubs and hockey sticks.
Suggested learning outcomes
After completing this Easter themed engineering resource students will be able to describe the three classes of lever and they will be able to make a structure.
Download the free Build a popsicle stick catapult activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Edible snow - how to make marshmallow
This resource will tell you how to make your own marshmallow. But not only that, we will be learning about the science of baking, and how a small change to the mixture can make a big difference.
Have you ever tried a marshmallow? They’re delicious!
You will be surprised by the amount of maths and science that goes into making these lovely little treats. Working out what works well, what doesn’t, how many ingredients to use and ratios, are all packed into one fun resource.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions as a classroom lesson plan or to follow at home.
Please do share your highlights with us @IETeducation.
Oh ho ho, and please do share your poetry highlights with us @IETeducation! #SantaLovesSTEM
Make a Christmas star lantern (Secondary)
In this fun and festive graphics project designed for secondary school students, learners focus on the making of a lantern shaped like a Christmas star using folded card and paper.
This activity allows the theme of Christmas to develop their knowledge and skills in Design and Technology and Engineering.
A activity sheet, presentation and templates are available to download for free.
And please do share your classroom learning highlights with us @IETeducation
Make a paper Christmas star lantern (Primary)
In this festive graphics project designed for primary aged kids, students will use nets to make parts from card and paper, which they will then assemble into a lantern shaped like a Christmas star.
This is a free resource that encourages learners to have fun with maths. Free handouts and templates are available to download below.
Oh ho ho, and please do share your creative highlights with us @IETeducation #SantaLovesSTEM
Input, process and output
In this activity students will make a simple infrared circuit to develop their understanding of this technology.
Our “Time for a Game” worksheet introduces students to infrared technologies, using the technology behind the Nintendo Wii as a real-life example.
Through building and testing an infrared circuit, students will learn to identify which components are inputs and outputs, a critical skill that deepens their understanding of how electronic systems function and enables them to design more complex circuits in the future.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). This can be effectively taught within systems and control, or electronic products approaches within design and technology, or through science with an emphasis on energy, electricity and forces.
Activity: Build and test an infrared circuit
Students will work in pairs to construct the circuit outlined in the “Time for a Game” worksheet. After building their circuits, they will test their functionality under different conditions and answer key questions about their design. This hands-on approach will allow students to identify the input and output components of the circuit, understand its performance in various lighting conditions, and consider how these factors would influence the design of a Wii controller.
The engineering context
By building and testing an infrared circuit, students will gain a practical understanding of the engineering process, from conceptualization to testing. Furthermore, this activity will inspire students to consider a career in engineering, as they experience firsthand the creativity, critical thinking, and problem-solving that this field entails.
Suggested learning outcomes
Students will develop a working prototype of an electronic circuit, gaining practical experience in the process. They will learn to identify inputs and outputs in a circuit and test its performance under different conditions. Furthermore, they will have the opportunity to apply their findings to hypothetical design situations, promoting critical thinking and problem-solving skills. This activity will teach students the ability to explain how their research findings could affect their design ideas, enhancing their communication skills and technological literacy.
Download our activity sheet for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
Is it worth converting to LPG? Fuel efficiency
Use mathematical calculations to decide whether it is worth switching to an alternative fuel
Can data be used to determine whether it is worth converting to LPG?
This activity will encourage students to use their problem-solving skills. Understanding what information is needed and how to use the information is a key part of problem solving.
Download our free fuel consumption worksheet below to take part in this engaging activity. This is a great way for GCSE students to learn about fuel efficiency and develop their problem-solving skills.
Students should to read the problem on the first slide of the presentation. Let them think about what criteria they can use to decide whether it’s worth converting to LPG. They should take into account the annual mileage, price of petrol or LPG at the local station and size of the car in question.
They should consider the amount of money saved by converting vs the cost of the conversion. Some students may want to examine the time it would take to recover the cost of converting the car. They also need to be aware that “a car uses 10% more LPG than petrol when driving the same distance.”
Discussion points
Encourage discussion about which type of car saves most and get them to think about why this is. Remember they all do the same annual mileage! If students don’t consider recovering the cost of conversion, then prompt them at some point.
Extending the problem
It is possible to use the spreadsheet to produce a graph showing how the savings vary with annual mileage. Students could investigate the fluctuations in LPG and petrol prices over time to see if this would influence their decision.
Potential GCSE content covered
In this activity learners will use and apply calculations, use compound measures, calculate the percentage of an amount and consider the application of algebra to spreadsheets.
What is LPG?
LPG is a by-product of crude oil extraction and the refining process. Many people who consider LPG as an alternative to petrol do so because they believe that the combustion of propane results in lower carbon dioxide emissions. In terms of fuel costs, LPG costs a little more than half the price of petrol or diesel, but fuel economy is about 20-25% lower. Therefore, the overall running costs of an LPG car is approximately a third less than a petrol only car – but only once you’ve recovered the cost of the conversion.
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Which medical imaging technique?
Select a method of medical imaging most appropriate for a particular medical condition
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics.
Activity info, teachers’ notes and curriculum links
This activity gets students to work in small teams to select a method of medical imaging which is appropriate to a particular medical condition. Students are provided with the medical records of eight patients. The different imaging techniques covered in this activity include: CAT, Gamma cameras, MRI, PET, Thermology, Ultrasound and X-rays.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Sew your own Christmas stocking
In this fun Christmas craft project for secondary school students, learners will design and sew their own Christmas stocking.
Our free resource is designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology and Engineering.
The free activity sheet and instruction presentation are available to download below.
Oh ho ho, and please do share your final creations with us @IETeducation! #SantaLovesSTEM
Counting stars using estimation
Decide on a systematic way to estimate the number of objects in an image
In this engaging STEM activity, designed for secondary school students, learners will take images from the Hubble telescope and use them to estimate the number of stars contained in those images.
Activity: Counting stars using estimation
The first slide in the presentation below introduces students to the context of the challenge and pushes them to think about how mathematics can be used to solve a real-life problem.
The second slide asks the students to estimate the number of stars in the image. A Geogebra file “counting stars” which subdivides the enlarged image into smaller grids for sampling has been supplied.
Students will need to find a systematic way of estimating the number of objects in the enlarged image.
One approach is to subdivide the enlarged image into smaller sections, count some of these and work out the mean. This mean can then be taken as the number of objects per subsection and multiplied by the number of subsections to get an estimate of the number of objects in the enlarged image.
To obtain an estimate for the number of stars in the original image, this figure then needs to be multiplied by the number of enlarged images in the original image.
Students will need to consider when to round off and what degree of accuracy is appropriate.
Discussion points
Comparing the different estimates obtained by the students would be interesting. Looking at the differences in their estimates for the number of objects in the enlarged image first and then observing how this transferred to the differences in the original image.
Extending the problem
This method is used in a wide variety of contexts, from estimating the number of hairs on someone’s head to auditing the number of insects in an enclosure at a zoo.
This activity could be extended by looking at capture/recapture as a method of estimating animal populations.
Potential GCSE content covered
In this activity students will cover mean average, rounding and accuracy and reasoning from calculations.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Pedometer design
Discuss the design of a step counter from the perspective of the engineer and the customer
In this unit learners will integrate a BBC micro:bit based programmable system into a complete and commercially viable step counter product that will aid people aiming to walk a certain amount per day.
What is the BBC micro:bit?
This activity is one of a series of resources to support using the BBC micro:bit in Design and Technology lessons.
The BBC micro:bit is a compact, pocket-sized programmable device designed to introduce coding and digital creativity to young learners. Packed with sensors, buttons, and a LED display, the micro:bit enables hands-on exploration of coding concepts through its user-friendly interface.
Created as part of the BBC’s “Make It Digital” initiative, the micro:bit empowers students to bring their ideas to life by programming animations, games, and interactive projects. Its versatility and ease of use make it a valuable tool for teaching computational thinking and fostering innovation among beginners, encouraging them to engage with technology and develop essential digital skills.
The engineering context
This subject serves as an excellent focal point for instructing students about programmable components and the incorporation of embedded intelligence within products. These aspects align with the core elements outlined in the 2014 curriculum for Design and Technology at key stage 3.
Furthermore, it presents a valuable opportunity to leverage the BBC micro:bit within the classroom environment, enhancing learners’ product integration abilities.
Suggested learning outcomes
Upon completing this task, students will be able to analyse and deliberate upon current products from the standpoint of the product engineer and the customer. Additionally, they will comprehend the distinct roles of individuals engaged in the design and production processes.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Inputs and outputs of design
Developing an understanding of the terms ‘system’, ‘input’, ‘process’, ‘output’ and ‘signal’
This activity aims to develop students’ understanding of key terms such as ‘system’, ‘input’, ‘process’, ‘output’, and ‘signal’, fostering critical thinking and independent investigation skills.
Our ‘Time for a Game’ scheme of work offers an engaging electronics context, allowing students to delve into infrared technologies as seen in popular devices like the Nintendo Wii.
This lesson plan helps leaners understand the core components that make up the devices they use every day. By learning about systems, inputs, processes, outputs, and signals, they will begin to see the world around them in a new light.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design and technology (DT).
Activity: Developing an understanding of the terms ‘system’, ‘input’, ‘process’, ‘output’ and ‘signal’
In this activity, students will work in pairs to define key terms and identify these features in common products using the ‘Inputs and Outputs of Design’ presentation.
They will explore the concept of a system as a collection of parts designed to carry out a function, and learn how inputs activate the system, while outputs are activated by the process. They will also delve into the role of signals in transmitting information between different system blocks. To reinforce this learning, the Wii film will provide a practical example of these concepts at work.
The engineering context
This lesson plan provides an engaging introduction to engineering principles, as students learn about the components that make up the systems around them. Understanding the inputs, processes, outputs, and signals of a system is foundational to engineering and design. This activity will inspire students to consider a career in engineering, as they gain insights into the creativity, critical thinking, and problem-solving involved in designing and understanding complex systems.
Suggested learning outcomes
Upon completion of this activity, students will have a clear understanding of the difference between input, process, and output in a system and be able to define these terms. They’ll be able to identify these features in common products, enhancing their understanding of the devices and technologies they interact with daily.
Download our activity sheet for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation
Circuits and symbols poster (secondary)
Secondary classroom poster showing basic components and symbols in a circuit.
Download the single poster or order a full poster set for free from the IET Education website.
Microchip technology
Is it ethical to use microchip implants in pets and people?
Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives.
Activity info, teachers’ notes and curriculum links
This engaging activity introduces students to the use of RFID technology. They investigate extensions to the use of such technology in various contexts.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation