Hero image

516Uploads

198k+Views

106k+Downloads

How to design a spaghetti roof structure
IETEducationIETEducation

How to design a spaghetti roof structure

(0)
In this hands-on activity students are challenged with designing and engineering a spaghetti roof structure. It should follow our Structural engineering starter and Structural engineering as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend a leaner’s basic knowledge of structures by providing a real-life context. It is not intended to form an introduction to structures. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering. Activity: Designing and engineering a spaghetti roof structure In this fun activity, students will explore structural engineering principles by designing and building a strong, lightweight roof structure using spaghetti. The challenge comes from having to use the smallest amount of spaghetti and glue possible to keep the structure light and strong. One their spaghetti roof is built, students must identify which areas are in tension and which are in compression so that they decide which parts of their structure need strengthening. Download our activity overview for a detailed lesson plan on structural engineering and how to design a roof structure for free! The engineering context Virtually every building needs a roof. Sometime the function of the room can be simple, it just needs to be strong and light so that it doesn’t fall down. Other times, more ergonomic considerations need to be taken into consideration such as weatherproofing, aesthetics, acoustics, insulation and fire resistance. Civil engineers must also be able to identify areas of tension and compression in existing structures, such as older buildings or in buildings that are having renovation work done, in order to be able to make recommendations for that will strengthen and support the existing structure. Suggested learning outcomes This lesson will teach students how to identify the key features of a structural component. They’ll learn how to identify the various pressures that a structural element can undergo and also be able to apply their knowledge to create solutions to given problems. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. You can download our classroom lesson plan for free! Please do share your highlights with us @IETeducation.
Testing fitness levels
IETEducationIETEducation

Testing fitness levels

(0)
In this activity students will learn about hypotheses by looking at heart rate data and how the use of computer games affects fitness. This lesson follows our Wii Fitness activity, which provides students with an opportunity to collect fitness data which they can use as evidence to debate whether people should be encouraged to engage in computer-based sport activities. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and science. Activity: Making hypotheses on how the use of computer games affects fitness In this activity students will review their results from our Wii Fitness investigation to form a hypothesis on how different activities affect heart rates. Students must consider the validity and size of the data set collected and work through a series of questions to explore if the data is sufficient to confirm their initial hypotheses. Download our activity overview for a starter lesson plan on hypotheses for free! The engineering context Engineering often involves problem-solving, and hypothesis based on initial observations can help engineers quickly define the potential cause of a problem. Hypothesis helps engineers to interpret data and can even guide them towards designing tests to make sure that the correct data is being gathered. This systematic approach can help to quickly validate or refute hypothesis, allowing engineers to find the right solution for the problem at hand. Suggested learning outcomes Students will be introduced to hypotheses and know how to create one from using a data set. They’ll also be able to evaluate the suitability and validity of the data collected as well as explain how results and ideas can be changed when we consider other variables. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. You can download our classroom lesson plan below. Please do share your highlights with us @IETeducation.
Design and make  a cookie cutter
IETEducationIETEducation

Design and make a cookie cutter

(0)
In this fun STEM teaching resource learners will discover how to create a 3D model of a basic shape in TinkerCAD and then print it using a 3D printer. We’ve created this classroom design activity to support the delivery of key topics within design & technology (D&T) and engineering. This teaching resource activity is based on 3D printing and provides a straightforward, practical way to introduce this technology into the curriculum. This activity introduces the concept of 3D CAD design and some of the basic tools used with CAD software. The software used for the CAD activity is the free and widely used TinkerCAD; however, this could easily be substituted for any other 3D CAD software already available in school. The activity involves designing a basic shaped cookie cutter, then printing it out using a 3D printer. The guidance given for the printer is generic and may need to be varied depending upon the specific model(s) available in school. This could be used as a main lesson activity to introduce basic CAD drawing skills or 3D printing. It could also be used as the basis for an integrated scheme of work, where learners subsequently use their cookie cutters to make biscuits, allowing integration with maths (measuring out ingredients) and food technology skills. Tools/supplies needed: Computer with TinkerCAD 3D Printer PLA filament of an appropriate diameter for the equipment available Optional (for starter): examples of plastic cookie cutters Follow our step-by-step guide on how to design and make a cookie cutter Learners will design and make a cookie cutter using CAD and 3D printing. The engineering context CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings. 3D printing is an area of huge growth, with applications ranging from small plastic parts to printing metal bridges in place over rivers! Suggested learning outcomes This resource combines design and technology with engineering with the aim that the learners will be able to develop skills in CAD and be able to 3D print a design idea successfully. Download our activity sheet and other teaching resources All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation.
Voltage poster
IETEducationIETEducation

Voltage poster

(2)
Secondary classroom poster where students can learn about the concept of potential difference through analogy. Download the single poster or order a full set of posters for free from the IET Education website.
Binary numbers
IETEducationIETEducation

Binary numbers

(1)
Use mathematics to explain how devices can be on or off Through investigating binary numbers and their role in representing electrical devices as on or off, students will see mathematics in action. Students will get to explore the technology behind the Nintendo Wii and apply this knowledge to design an interactive ‘tag’ game. The activity not only enhances their understanding of communication methods and technologies but also hones their critical thinking and independent investigation skills. This hands-on approach makes maths both tangible and relatable, sparking their interest and demonstrating how integral maths is in everyday life. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics. As part of the ‘Time for a game’ scheme of work, this activity provides an electronics systems context for students to explore infrared technologies. Other activities include Inputs and outputs of design and Electromagnetic spectrum. Activity: How use maths to identify households that will be most affected by fuel poverty In this activity students will investigate the use of binary numbers. Students will work in teams to represent different numbers through standing (for 1) or sitting (for zero). They will brainstorm applications for binary numbers and delve deeper into selected applications. Each step is designed to maximise engagement and learning, making maths a challenge rather than a chore. Download our worksheet for a detailed lesson plan for teaching students how to use maths to explain how devices can be on or off The engineering context Understanding how binary numbers operate in electronic devices lays the foundation for a future career in engineering. Binary numbers play a fundamental role in the field of engineering, particularly in computer and electrical engineering. They form the basis of all digital systems, including computers, mobile phones, and other electronic devices. Suggested learning outcomes By the end of this activity, students will have a solid understanding of binary numbers and their applications in electronic devices. They will appreciate the role of maths in technology, improving their problem-solving and critical thinking skills. This activity also fosters teamwork and encourages independent investigation, equipping students with key skills for their academic journey and beyond. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Property of rocks
IETEducationIETEducation

Property of rocks

(0)
Following this lesson plan, students will be able to identify the bedrock on which their town is built using a geological survey map. They’ll also investigate the properties of different types of rocks and interpret data on rock hardness and drilling capabilities. The activity also encourages leaners to consider the implications of large-scale tunnelling and boring work on the bedrock of their town. It’s not just about understanding the science behind it, but also about appreciating its impact on their everyday lives. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). It can also be used to support geography lesson teaching. Activity: Looking at the link between sewage and the underground tunnel system In this activity, your students will play the roles of investigators for a local water company. They’ll be asked to examine the feasibility of digging a tunnel underneath their town to alleviate strain on the current sewage system. The engineering context In civil engineering, knowledge of geology is essential when designing and constructing infrastructure such as buildings, bridges, tunnels, and roads. The type of soil and bedrock, the presence of groundwater, the risk of earthquakes or landslides - all these factors can greatly influence the feasibility, design, safety, and cost of construction projects. By investigating the feasibility of constructing a sewage tunnel, students will gain insights into the practical applications of their geography, science and math lessons. They’ll see first hand how engineers use their knowledge of rocks and their properties to make decisions that impact entire communities. Suggested learning outcomes The goal of this lesson plan is not only to teach your students about the properties of rocks but also to inspire them to think critically about how these properties affect our world. By the end of this activity, they’ll have a deeper understanding of their town’s geological makeup and the implications of drilling through the bedrock. They’ll also be able to interpret data on rock hardness and drilling capabilities, which are crucial skills in many STEM fields. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the film), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can download our classroom lesson plan. Please do share your highlights with us @IETeducation.
Filtering water
IETEducationIETEducation

Filtering water

(1)
Design and build your own water filtration system Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. Activity info, teachers’ notes and curriculum links This activity gets students to investigate different possible ways of filtering dirty water to improve its cleanliness by designing and building their own water filtration systems. The lesson can be extended with a practical session in which students work in small teams to investigate the salinity of different water samples – see the related extension activity ‘Water Treatment Systems’ within the related activities section below. The engineering context Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. Engineers and scientists work to provide us with safe, clean drinking water, with efficient and clean methods for disposing of our waste water and practical drainage solutions. Suggested learning outcomes Students will be able to recall the different types of impurities that can contaminate water. As well as this, they’ll know how to describe how water filtration equipment acts in several different ways to produce potable (drinkable) water. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
How to draw a plan view in maths
IETEducationIETEducation

How to draw a plan view in maths

(0)
Producing a plan view will help children to develop drawing skills, while also introducing concepts such as dimensions, proportion, and scale. All through our fun, hand-on maths activity! Different types of drawing are used to communicate different types of information. Plan views see a section of an object as projected on a horizontal plane. In effect, a plan view is a 2D section drawing viewed from the top – this is different from a top view, which would see all of the features looking down from above. In the case of a room, for example, a plan view may show tabletops, chairs, doors etc., whereas a top view would also show the legs of the tables, light fittings etc. Plan views are widely used to show rooms or buildings from above. They may include measurements, furniture, appliances, or anything else necessary to the purpose of the plan. Plan views may be used to see how furniture will fit in a room, for example when designing a new kitchen, to show the builders the layout of a new building, or on estate agent’s literature to give potential buyers an indication of what a house is like. The lesson will help learners pick up an understanding of the practical uses of these drawings, from planning the layout of a room to presenting quite complex information about buildings. This is one of a set of resources developed to support the teaching of the primary national curriculum, particularly key stage two (KS2). It has been designed to support the delivery of key topics within maths and design and technology (DT). This could be used as a one-off activity, an extension to maths learning on scale, or linked to other school activities, such as preparing a map for parents evening. The engineering context Designers, engineers, and architects need to be able to communicate the details and features of rooms or products to other engineers, manufacturers, and users. This can include sizes, assembly instructions and layouts. Drawings are typically one of the main methods used for explaining this information – they can be found in every area of engineering and manufacturing. Suggested learning outcomes Children will learn about the purpose of a plan view drawing and be able to create one for themselves. They will also learn how to use dimensions and scale when drawing. Download our activity sheet and related teaching resources All activity worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. And please do share your classroom learning highlights with us @IETeducation.
Rocket countdown maths game
IETEducationIETEducation

Rocket countdown maths game

(0)
Practice counting backwards from 50 in this fun rocket countdown maths game for KS1! In this engaging maths game, students will learn to countdown backwards using different steps, i.e. 1s, 2s, 3s, 5s and 10s. This resource will prepare learners to count to and across to 50, forwards and backwards, beginning with zero or from any given number. Learners will release balloon ‘rockets’ to enhance engagement when each countdown reaches zero. This activity could be used as a main lesson to teach learners how to count backwards using the prompts in the teacher presentation below. Activity: Racket countdown maths game This activity is one of a set of resources developed with the theme of the James Webb Space Telescope (JWST) to support the teaching of the primary national curriculum. These resources are designed to support the delivery of key topics within maths and science. This resource focuses on numbers and the ability to count backwards to zero using different number intervals. What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come. Suggested learning outcomes By the end of this activity, students will be able to count backwards from numbers up to 50, and they will be able to count backwards in steps of 1s, 2s, 3s, 5s and 10s. The engineering context A grasp of number combinations and mathematical operations is essential for engineers solving various intriguing challenges. For instance, electronic engineers use countdown timers to inform drivers about the transition of a traffic light from red to green, ensuring a safe departure for motorists. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Investigate the James Webb Space Telescope
IETEducationIETEducation

Investigate the James Webb Space Telescope

(0)
Examine the materials used on the James Webb Space Telescope in this free activity. In this engaging STEM activity for KS3, we will delve into the groundbreaking technologies used in the construction of the James Webb Space Telescope (JWST), one of humanity’s most impressive space observatories. As budding engineers, students will have the unique opportunity to investigate the engineered materials that make the JWST a marvel of modern engineering. Get ready to uncover the secrets behind the telescope’s incredible capabilities, discover the innovative materials that withstand the harsh conditions of space, and gain a deeper understanding of how scientific ingenuity allows us to peer into the universe’s farthest reaches. Activity: Investigate the James Webb Space Telescope In this activity, students will investigate an engineered material and share the results of their research with the class. This unit has a predominantly design & technology, and engineering focus, although it could be used in science. It could also be used as a main lesson or a research activity to develop an understanding of materials and their properties. What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. Suggested learning outcomes By the end of this activity, students will be able to understand that materials can be selected for specific characteristics and purposes, they will be able to identify the properties of materials required for a particular function, and they will be able to explore a range of engineered materials, understanding why they are used. The engineering context The materials students will examine are used in the JWST or aerospace applications. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Discover mass, volume and density
IETEducationIETEducation

Discover mass, volume and density

(0)
In this exciting STEM activity, you will be given a variety of objects made from different materials. You will weigh each object and then measure its volume by immersing it in water. You will then use this information to calculate the density of each object. Activity to discover mass, volume and density This activity could be used as a main lesson to teach learners how to collect data through measurement and use number skills in a practical context. It could also be used as one of several activities within a wider scheme of learning, focusing on using maths and science to understand the properties of materials. How do you calculate density? Density = Mass / Volume What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come. Suggested learning outcomes By the end of this activity, students will be able to compare materials based on their density, and they will be able to measure the volume of water and the weight of an object. Students will also learn how to calculate density, and they will be able to communicate measurements using appropriate SI units. The engineering context Space Engineers must have a good understanding of density when they load cargo onto a spacecraft. They need to know the density of the materials they are loading to ensure the rockets have enough power to allow the spacecraft to lift off. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Solar power in space
IETEducationIETEducation

Solar power in space

(0)
Investigate the photovoltaic effect and manufacture a simple circuit in this free activity. In this engaging task, students will explore the photovoltaic effect by creating a simple circuit and incorporating it into a product—specifically, a solar-powered version of the well-known jitterbug project called a “solarbug” This activity can serve as a targeted hands-on exercise for subjects like Electronics or Product Design under the umbrella of Design & Technology. Alternatively, it could be included as a component of a study on the application of solar energy in the field of science. Activity: Solar power in space Photovoltaic cells, also known as solar cells, are used as a power source by the James Webb Space Telescope (JWST). This activity is one of a set of STEM resources developed with the theme of the James Webb Space Telescope to support the teaching of Science, Design & Technology, Engineering and Mathematics. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of increasingly complex electronic circuits. What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come. Suggested learning outcomes By the end of this activity, students will understand how photovoltaic cells work, how they can be used in a circuit and how to make a simple circuit. The engineering context The James Webb Space Telescope uses photovoltaic cells as its power source. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Electrical safety indoors poster
IETEducationIETEducation

Electrical safety indoors poster

(1)
Primary classroom poster showing useful rules to observe when using electricity in the home. Download the single poster or order a full set of posters for free from the IET Education website.
Forces poster
IETEducationIETEducation

Forces poster

(1)
Primary classroom poster explaining what forces are and how they act. Download this single poster or order a full set of posters for free from the IET Education website.
Build a popsicle stick catapult
IETEducationIETEducation

Build a popsicle stick catapult

(1)
Develop an understanding of levers and build a popsicle stick catapult from craft sticks with this free STEM lesson plan. This is an exciting and engaging way to learn about physics and engineering. With the right materials, build a simple yet effective catapult capable of launching chocolate eggs up into the air! This lesson plan is perfect for KS3 students and can be used as a fun one-off main activity to introduce levers. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design & Technology, Mathematics and Science. This resource involves making a simple catapult which works as a lever to propel a chocolate or mini egg. This activity will take approximately 50 – 70 minutes to complete. Also included is a fun crossword using words from the activity to promote sticking learning. Tools/resources required Craft sticks (at least 7 per learner) Small elastic bands (at least 7 per learner, plus spares) A teaspoon (metal or plastic) Chocolate mini eggs (or similar) For the extension activity: Pencils (or similar, such as dowel rods) Elastic bands The engineering context Levers are one of the simplest machines and are used in many applications. These include pliers, scissors, brake pedals and wheels and axles. The principles of levers are also used in many applications when designing sports equipment, such as cricket bats, golf clubs and hockey sticks. Suggested learning outcomes After completing this Easter themed engineering resource students will be able to describe the three classes of lever and they will be able to make a structure. Download the free Build a popsicle stick catapult activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Sew your own Christmas stocking
IETEducationIETEducation

Sew your own Christmas stocking

(1)
In this fun Christmas craft project for secondary school students, learners will design and sew their own Christmas stocking. Our free resource is designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology and Engineering. The free activity sheet and instruction presentation are available to download below. Oh ho ho, and please do share your final creations with us @IETeducation! #SantaLovesSTEM
Design and make a prayer mat for Ramadan
IETEducationIETEducation

Design and make a prayer mat for Ramadan

(0)
Using our KS2 lesson plan and template, learners will design and make their own prayer mat for Ramadan using string, wool and colouring pencils while nurturing an understanding of the religious festival of Ramadan In 2024 Ramadan starts on Sunday 10 March and ends on Monday 8 April. It is estimated that globally 1.6 billion Muslims will take part in Ramadan and will fast from sunrise to sunset for one lunar month. In this lesson activity learners will look at what Ramadan is, what happens during Ramadan and what is important to Muslims during Ramadan. They will look at existing prayer mats and design a prayer mat using a provided template suitable for the KS2 level. We’ve created this design activity to support the teaching of key topics within design & technology (D&T), religious studies and art. This could be used as a one-off lesson activity to develop designing and sketching skills or an understanding of Ramadan. Alternatively, it could be used as a part of a wider scheme of work to develop designing and modelling skills in design & technology and engineering. Tools/supplies needed: Paper and card Drawing implements: colouring pencils or pens, pencils and rulers Scissors Optional, if available – examples of actual prayer mats For extension activities: glue sticks, string, wool, selection of materials The Engineering context All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients. Suggested learning outcomes It is important for learners to understand all types of religious festivals as part of their religious education. This resource combines religious education with art and design and technology with the aim that the learners will be able to generate, develop, model and communicate their ideas through discussion, annotated sketches and pattern pieces. Specifically, children will learn the main considerations and features for designing a prayer mat for Ramadan and be able to design a prayer mat that reflects Ramadan using shapes and patterns. Download our activity sheet and other teaching resources for free All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation.
The Vikings - Integrated project
IETEducationIETEducation

The Vikings - Integrated project

(0)
Multi-lesson activity on The Vikings free KS2 lesson plan activity This is a multi-lesson integrated classroom project teaching resource based around the theme of the Vikings. It aims to show how Design & Technology and Engineering can be built into a wider theme-based set of primary lesson activities covering a range of curriculum areas including Literacy, Numeracy, Computing/ICT, Design & Technology, Engineering, History and Art. Teachers can select the activities they feel best fit with their lesson planning and carry out as stand-alone activities, or learners can complete all activities within this teaching resource as part of an integrated scheme of work. Activity: Four activities based on the Vikings Learners will look at who the Vikings were, where they came from and their importance in the history of the United Kingdom and Europe. All classroom activities are suitable for the KS2 level and can be done as stand-alone activities or done in turn so as to complete the full multi-lesson integrated project. The Engineering Context Understanding about the history of engineering and design helps engineers to learn from past successes and mistakes. For example, learning about Viking longboats helps us to understand why boats float and what materials are the best to use in boat construction. Engineers need to have good literacy and numeracy skills in order to successfully create design solutions and communicate their ideas. Suggested learning outcomes It is important for learners to understand about key people and groups of people from history as well as what we learnt from them. This resource combines history with art and design and technology and aims to show how engineering can be built into a wider theme-based multi-lesson project. Specifically, children will learn how to research and analyse viking longboats including what they were made from and how they worked; they will be able to write and act out a script about how the Vikings lived; they will be able to design a Viking pin badge; and be able to make a Viking purse using one of two different methods. Download our activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation
Renewable energy debate
IETEducationIETEducation

Renewable energy debate

(3)
Structured class debate on the location of a new wind farm There is much debate about the issues created by carbon emissions and how renewable energy sources can help resolve these challenges. Most people agree that renewable energy is a good thing, but many oppose to having wind turbines built near their neighbourhood. In this role-play activity, participants take on different roles to debate a proposed wind farm. In pairs, students discuss whether their character would be in favour of the proposed wind farm and prepare a two-minute talk to share their case with the group. Afterwards, divide the larger groups into ‘for’ and ‘against’ and bring together all the individual statements to form a strong, coherent case. Four people are chosen to give two reasons to support their argument. Activity info, teachers’ notes and curriculum links This activity has been written with a strong science bias. However, it can easily be taught in design and technology with either a systems and control approach or from a ‘sustainability’ angle, looking at the topic of wind farms and the future of energy production. The ‘sustainability’ perspective will provide an activity that could involve design and technology, geography and citizenship. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Science behind the materials
IETEducationIETEducation

Science behind the materials

(1)
Explore the properties of solids, liquids and gases In this unit, students will develop their understanding of the properties of the three states of matter. They will have the opportunity to experiment with a range of different substances that do not fit neatly into the traditional states of matter model. Activity info, teachers’ notes and curriculum links An engaging activity where students will explore materials to develop an understanding of why they behave the way they do. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation