Hero image

516Uploads

198k+Views

106k+Downloads

Water supply
IETEducationIETEducation

Water supply

(0)
Organise water filtration components to create a safe water supply system Activity info, teachers’ notes and curriculum links This activity challenges students to work in small teams to design a water supply system for a small town of 5,000 inhabitants. They have to work within a budget, including giving themselves a profit margin. The activity offers strong opportunities for cross-curricular work with Enterprise. The ‘Catalogue of Components’ handout includes a list of possible parts from which students can include in their design of their filtration system. Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Boat design challenge – KS3 engineering
IETEducationIETEducation

Boat design challenge – KS3 engineering

(0)
A fun engineering challenge for KS3 that will give students the opportunity to test boat hull designs in a test tank. Through this process, students will learn about the importance of applying relevant scientific and mathematical understanding when refining and developing an idea. This activity allows students to explore and develop their critical thinking and decision-making skills through a practical approach. The experiment ensures a ‘fair’ set of results is produced. The success of their overall boat hull design is directly dependent upon how well they apply their knowledge and understanding across the disciplines. In addition, key learning points needs to be reinforced through mathematics. The students could carry out initial research into different hull shapes used for various types of boat, and they should produce an image board of hulls with annotations to explain why the shape of the hull is appropriate for the particular type of boat. Types of boat hulls that could be researched include yachts, cruise ships, speed boats, fishing boats, container ships, and catamarans. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project and ideal for use in a STEM Club. However, it can also be tackled independently from each subject. Tools/resources required Test Tank (the construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity) or by a technician) Vacuum Former High Impact Polystyrene/MDF or softwood blocks Optionally, modelling clay General Workshop Facilities Stopwatch Masses with a suitable holder The engineering context The focus of this activity is on the principle of hydrodynamics (a similar set of principles to aerodynamics but involving water). Suggested learning outcomes By the end of this activity students will be able to understand the importance of testing models and prototyping within the development of an idea, the need for streamlining in boat design and the principles of hydrodynamic design. Students will also be able to refine ideas in order to improve outcomes, they will be able to relate the shape of the hull to speed and the forces it needs to withstand maximum efficiency and they will be able to apply scientific and mathematical understanding to an engineering context. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Sound velocity
IETEducationIETEducation

Sound velocity

(1)
How fast does sound travel? What is sound velocity? Find out about transverse and longitudinal waves in our free, downloadable KS4 maths worksheet. From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. Activity info, teachers’ notes and curriculum links This engaging activity allows students to investigate the velocity of sound. Two methods, a direct method and an ICT based method, are proposed. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Smart sensor card game
IETEducationIETEducation

Smart sensor card game

(0)
Card game to consolidate understanding of electronic systems The role of smart sensors in our everyday lives is becoming increasingly fundamental. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future. Students are introduced to some recent developments in using smart sensors in control systems. Many of these uses are in health care and other high-tech applications. Activity info, teachers’ notes and curriculum links In this activity students learn the differences between smart sensors and ordinary sensors by studying some applications of smart sensors. They may also use a card game to consolidate their understanding of electronic systems. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can stream and download the related films by clicking on the appropriate link in the related resources section. And please do share your classroom learning highlights with us @IETeducation
Smart and modern materials
IETEducationIETEducation

Smart and modern materials

(0)
The new materials changing the way we live Discover and explore the new materials changing the way we live with our Smart and modern materials activity. The development of new materials with incredible properties are changing the way we live: from LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. Activity info, teachers’ notes and curriculum links In this practical lesson, students conduct different tests on a selection of materials and identify each one from its properties. The tests include Eureka cans, electrical circuits, and other interesting investigations to test the density, hardness, magnetic and conductive properties of materials. This activity can be tailored to include tests that best investigate the properties of the materials you have available. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation Tools/resources required Resources required for class: Samples of 8 to10 different materials, with more than one sample of each if possible. All the samples should be able to fit in the available eureka cans Access to accurate weighing scales Safety glasses. Resources required per team: HB pencil, copper coin*, knife**, iron nail, small steel file Eureka can and an accurate measuring cylinder A magnet Powerpack/battery pack, 3 leads, light bulb and holder, crocodile clips A pad of sticky notes. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. To watch the ‘Nature reinvented’ video, please visit IET Education website.
Smart materials
IETEducationIETEducation

Smart materials

(0)
Identifying which materials might offer the best prospects for a financial investment In this activity, students will investigate the properties of different types of smart materials and decide which ones might offer the best prospects for financial investment. The development of new materials with incredible properties is changing the way we live. From 4K TVs to super light airliners, these materials have quickly found their way into the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT) and science. Activity: Identifying which materials might offer the best prospects for a financial investment Learners will investigate the properties of different categories of smart materials and decide which kinds of materials might offer the best prospects for a financial investment. Students work in teams and present their results to the rest of the class. The activity offers strong opportunities for cross-curricular work with Enterprise. This activity can be extended with a related practical session ‘Smart and modern materials’, where students identify a material from its particular properties. The engineering context Smart materials are often at the forefront of engineering and technological innovation with engineers using them to create products that are more durable, adaptable and more efficient to manufacture. From building structures that can withstand earthquakes to designing prosthetics that outperform human body parts, the applications of smart materials are vast (and continually expanding!). By learning about smart materials, students will get an insight into how these modern materials are made, used and how they can be applied to real world issues such as improving people’s lives. Suggested learning outcomes This lesson will teach students how to recall a variety of different examples of smart materials and describe how their properties react to changes in their environment. They’ll also be able to investigate smart materials on both a theoretical and practical level, understanding their applications as well as their investment potential. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Science behind the materials
IETEducationIETEducation

Science behind the materials

(1)
Explore the properties of solids, liquids and gases In this unit, students will develop their understanding of the properties of the three states of matter. They will have the opportunity to experiment with a range of different substances that do not fit neatly into the traditional states of matter model. Activity info, teachers’ notes and curriculum links An engaging activity where students will explore materials to develop an understanding of why they behave the way they do. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Robot swarms
IETEducationIETEducation

Robot swarms

(0)
Write a set of rules for governing the behaviour of a robot swarm used in search and rescue operations The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links This activity gets students to work in small teams to create a set of simple rules which can be used to control a robot swarm designed to help in search-and-rescue-type scenarios such as earthquakes. The ‘Robot Swarms’ student brief sets the scene. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Measuring boat speed - KS3 engineering
IETEducationIETEducation

Measuring boat speed - KS3 engineering

(0)
Time the journeys of different shaped boats and present the results This engaging engineering activity for KS3 considers displaying data from a practical investigation looking at the effect of streamlining a boats hull. Students will be asked to consider how this information can be represented effectively and use this to form conclusions. The reliability of their results will then be discussed. Activity Measuring boat speed Students will use the test rig, which can be found in the resources below, to test several different shaped boats. Students should measure the time taken for each boat to travel a set distance and record the results. Ask the students to discuss the fact that there is no measurable independent variable as it is very difficult to quantify the hull shape in terms of numbers. The students should ponder how they are going to represent these results graphically. If time is available, complete the investigation by repeating the tests. Discuss the sorts of errors that might occur in the collection of results. Learners will then plot their results into a bar graph. This could be used as part of an advertising campaign to sell the boat which could include design, bar chart, a brief conclusion and an explanation as to why the results are reliable. There is also an opportunity to use data logging equipment as well as light gates to further reduce errors in this engineering activity. As an extension, students could calculate speed (s=d/t), and the mean speed for each boat, taking into account the anomalous results. Students could consider what they could measure to draw a line graph and find the optimal hull design. If time is available, students could manufacture and test their own designs and include them within the analysis. This activity will take approximately 45 minutes. Tools/resources required The construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity or by a technician) Boat objects Stop Watch Graph Paper Suggested learning outcomes By the end of this activity students will be able to explain when to use a bar chart and when they should be used to display categoric variables, they will be able to evaluate an experiment in terms of its reliability and precision and they will be able to apply scientific and mathematical understanding to an engineering context. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Understanding the equation for a sound wave
IETEducationIETEducation

Understanding the equation for a sound wave

(0)
Learn about sound waves in this free STEM with this free lesson plan for KS3 From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. This engaging STEM activity is aimed at KS3 students and deals with how animals use sounds and how sounds change in natural phenomena. This is so that a student can understand how sound waves travel. The teacher will first distribute a copy of the ‘Animal Sounds’ handout, which can be downloaded below, to each student. Make sure students understand sound is a longitudinal wave of compressions and rarefactions of the material. Soundwaves follow the laws of wave behaviour, so they are a useful introduction to wave properties. This activity can be simplified (particularly for less able students) by creating a discussion on why different animals have different hearing ranges and their experience of phenomena such as the Doppler effect. Use the handout to discuss different sounds and what they might have learned in other lessons (e.g. music) about pitch, frequency, amplitude etc. As an extension students could produce a display from low to high frequency, showing where the sound ranges used by different animals lie. Students could consider how sounds outside the normal spectrum could be used to develop new products. For example, to make ‘silent’ devices to broadcast sound or data between two points. This is a quick and simple activity that will take approximately 15 minutes. Tools/resources required Calculators The engineering context Sounds are vibrations travelling through materials. Many animals make sounds, either for communication or for location. Sound travels at different speeds in different materials. Generally, the denser the material, the faster the sound will travel. Sound is a longitudinal wave of compressions and rarefactions of the material (a rarefaction involves particles in the material being more spread out than usual). Sound waves follow the laws of wave behaviour, so they are a useful introduction to wave properties. Suggested learning outcomes By the end of this free resource students will know that sound is produced by objects vibrating and they will understand that sound is a longitudinal wave. They will also know about the range of frequencies that can be heard by humans and other animals and they will understand that sound travels at different speeds in different mediums. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Microwaves and health
IETEducationIETEducation

Microwaves and health

(1)
Explore the risks associated with exposure to microwaves Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. Activity info, teachers’ notes and curriculum links This engaging activity allows students to explore the hazards and risks associated with exposure to microwaves. A microwave monitor is used to measure the microwave radiation from a microwave oven and a working mobile phone at a range of distances. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Mobile phones and health
IETEducationIETEducation

Mobile phones and health

(0)
Investigate the potential effects of mobile phones on our health The ‘Time for a game’ scheme of work provides an electronics systems context for students to explore infrared technologies. Activity info, teachers’ notes and curriculum links An engaging activity in which students will investigate the potential effects to health of the use of mobile phones and their transmitters, which use radio waves and microwaves to transmit information. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Medical imaging
IETEducationIETEducation

Medical imaging

(1)
A closer look at the techniques used to scan brain tissue The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links An engaging starter activity making use of the short film ‘Mind Mapping’ (see related resources section below) and encouraging students to think about new technologies and how difficult it is to predict their future development and application. Students consider how engineers have created different and safe techniques of scanning brain tissue. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Materials and design
IETEducationIETEducation

Materials and design

(0)
Design a sporting outfit that is fit for purpose This unit focuses upon how materials have been specifically engineered in order to provide the requisite qualities and characteristics. It builds on the ‘science behind the material’ scheme of work, developing the students’ understanding of particle states and motion in relation to materials used in engineering/product design. It allows the students to explore a range of engineered and smart materials, identifying why they are ‘fit for purpose’ and how they have been engineered to achieve this purpose. Activity info, teachers’ notes and curriculum links An engaging activity where students will design an outfit that could be worn whilst participating in a sport. With a strong emphasis on developing creative thinking when generating ideas, this activity requires students to be creative when applying knowledge and understanding in science to a design and technology context. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Marketing a product
IETEducationIETEducation

Marketing a product

(0)
Promoting a product to a particular target user group This marketing lesson revolves around designing, branding, and marketing a new Nintendo Wii product. Students will be tasked with promoting a product to a particular user group, honing in on teamwork, creativity, and entrepreneurial skills. Make your pitch’ will provide students with an opportunity to explore and understand their chosen user group in detail through the analysis of a series of audio pitches. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT). Activity: Promoting a product to a particular target user group The activity consists of defining what a pitch is and analysing three radio adverts (pitches) attached in the Audio Radio Pitch (Presentation). The class will identify the unique selling point of the product, the specific user group targeted, and whether they believe the advert is successful, giving reasons for their opinion. Before proceeding to slide 3 of presentation, students will be asked, “What makes an effective pitch?” They will compile a list based on their evaluations of the three radio audio clips. Slide 2 will then be shown for comparison. The engineering context From designing a new video game console or inventing an innovative piece of tech, this activity will show students how understanding user needs and preferences is crucial in creating products that people want to buy. This lesson will also highlight the importance of effective communication in the form of product pitches. Suggested learning outcomes By the end of this lesson, students should be able to explain why it is crucial to understand what a user wants when designing and marketing a product. They should also be able to define what a ‘pitch’ is and design a ‘pitch’ aimed at a specific user group or client. This understanding will empower them not only to create effective marketing strategies but also to appreciate the importance of user-focused design in product development. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. Please do share your highlights with us @IETeducation.
Electromagnetic waves
IETEducationIETEducation

Electromagnetic waves

(0)
Look at the type of electromagnetic radiation used in different imaging techniques In this engaging activity students will look at the properties and applications of waves in general, and the electromagnetic spectrum in particular. The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. From X-rays to MRI scans, student will gain a new appreciation for the science behind these common procedures. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). Activity: Looking at the type of electromagnetic radiation used in different imaging techniques Learners will try to work out the type of electromagnetic radiation used in different imaging techniques. Students will be given a quiz handout with five statements related to a specific wavelength of electromagnetic radiation. They will discuss in mixed ability teams to determine the correct type of radiation for each statement. The quiz includes four rounds, with the possibility of extending the activity by adding properties for other areas of the spectrum such as infrared, ultraviolet, and more. The engineering context Many medical imaging technologies, such as X-rays, CT scans, and MRI, are based on principles of electromagnetic radiation. By looking at the practical applications of electromagnetic radiation, students will see first hand how engineers can make significant contributions to healthcare and other vital sectors. Suggested learning outcomes Students will deepen their understanding of the electromagnetic spectrum and its continuous range of wavelengths, frequencies, and associated properties. They will become aware of the practical applications of electromagnetic radiation in medicine, particularly through the use of scanners. This knowledge will not only enhance their scientific understanding but also foster critical thinking and cooperative learning skills. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can download our classroom lesson plan and quizzes for free! Please do share your highlights with us @IETeducation.
Make a night-light circuit
IETEducationIETEducation

Make a night-light circuit

(0)
Design and make a solar powered night-light circuit In this engaging and practical STEM activity, designed for secondary school students, learners will investigate the photovoltaic effect by designing and making a solar power night-light circuit. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science. This could be used as a short design and make project in Electronics or Product Design within Design and Technology. It could be extended into a longer project using the ‘Design Guide (handout)’ to provide a structure for the sequence of tasks to be carried out. Students should be divided into pairs or small teams. Their design brief is to design and manufacture a prototype solar powered night-light. The prototype should be powered by solar energy, produce no waste by-product with normal use, provide an appropriate illumination for a task (to be identified), illuminate automatically when the light level drops (below an identified level) and it should be manufactured from reused materials, where possible. Tools/resources required Access to appropriate CAD software for circuit modelling and development Modular electronics kits or prototype boards (breadboards), as appropriate Transistor sensor circuit help (handout) Design Guide (handout) A range of components to manufacture the circuits Suggested learning outcomes By the end of this activity students will have an understanding of how photovoltaic cells work, how they can be used and the impact of using photovoltaic cells in aesthetic, economic, and environmental issues. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Photovoltaic cells - Investigating circuits
IETEducationIETEducation

Photovoltaic cells - Investigating circuits

(0)
In this solar panel STEM project, students will investigate the photovoltaic effect by manufacturing a simple circuit and integrating it into a product, in this case a version of the popular jitterbug project. The jitterbug is a device that moves due to vibrations caused by an off-centred mass on a motor’s driveshaft, can be powered by sunlight when connected to a photovoltaic (PV) cell. Learners will gain insight into the works of sustainable technology by learning about photovoltaic cells (these solar-powered cells are a primary component in renewable energy solutions). This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It is part of the ‘Let there be light’ scheme of work, which involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a Design and Make Assignment (DMA) project in design and technology (DT), with cross-curricular links with Science. The engineering context Understanding how to build a simple circuit is one of the fundamental skills in engineering. It provides the basis for understanding electricity and electronics, which are integral to many areas of engineering - from electrical and electronic engineering to computer engineering and even mechanical and civil engineering. Furthermore, photovoltaic cells, or solar cells, convert sunlight directly into electricity. This technology plays a key role in renewable energy solutions, which are becoming increasingly important due to the global push towards sustainable living. Understanding how photovoltaic cells work gives students insights into this technology, preparing them for future innovations in the field. Suggested learning outcomes Upon completion of this lesson, students should have a comprehensive understanding of how photovoltaic cells work and how they can be integrated into a circuit. They will gain hands-on experience in manufacturing a simple circuit and integrating it into a product. This activity not only deepens their understanding of the photovoltaic effect but also exposes them to the practical side of electronics and product design. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. Please do share your highlights with us @IETeducation.
Investigate the photovoltaic effect
IETEducationIETEducation

Investigate the photovoltaic effect

(0)
Learn how photovoltaic cells work and investigate the photovoltaic effect In this engaging STEM activity, designed for secondary school students, learners will discover how photovoltaic cells work, how they differ from solar thermal cells, and they will investigate the photovoltaic effect. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science. This is a short activity which involves investigating the photovoltaic effect. It could be used as a starter activity in Electronics or Product Design within Design and Technology, or to provide students with extended background information during the design and make project. It could also be used as a starter in Science. Students will be given the ‘What is a photovoltaic cell’ handout. They should consider the following questions: How do photovoltaic cells differ from solar thermal cells? What commonly available products use photovoltaic cells? What are the advantages and disadvantages of photovoltaic cells? What factors would affect the positioning of a photovoltaic cell? Tools/resources required Internet access Ideally, small operational models of solar thermal and photovoltaic cells that the students can handle Suggested learning outcomes By the end of this activity students will be able to list the two types of solar panel and give examples of how they are used, and they will be able to explain how photovoltaic cells work. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Photovoltaic cells - Modifications
IETEducationIETEducation

Photovoltaic cells - Modifications

(0)
Investigate some potential modifications to your solar powered night-light circuit The ‘Let there be light’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a Design and Make Assignment (DMA) project in Design and Technology (D&T), with cross-curricular links with Science. Activity info, teachers’ notes and curriculum links An engaging activity in which students will investigate some potential modifications to the circuits they have designed and made in the ‘Let there be light 2’ activity. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet below! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation