524Uploads
214k+Views
114k+Downloads
All resources
Design and print a model town
With our design and technology KS3 teaching resource lesson plan and template, learners will create a visual answer to a design situation using both sketching and CAD drawing software, followed by 3D printing a physical model.
This is one of a set of teaching resources designed to allow learners to use practical methods to support the delivery of key topics within Design & Technology and Engineering. This activity is based on CAD and 3D printing and provides a straightforward, practical way to introduce these technologies into the curriculum.
This activity could be used as a main lesson activity to reinforce CAD drawing skills or to introduce 3D printing. It could also be used as part of a scheme of work learning about the design process.
Activity:
Learners will decide upon a building to create and its purpose before sketching three draft ideas. They will then select the best features of their ideas before drawing a final design idea. Learners can share their ideas and concepts with peers for constructive feedback and improvement of designs.
Once their designs have been finalised they will use Onshape to produce CAD models of their buildings and then 3D print them to create a town including the work of the whole class.
Tools/supplies needed:
Pencils
Computer access with 3D drawing package (Onshape, Tinkercad, Fusion 360, Solidworks etc)
3D Printer and filament
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing in engineering facilitates rapid prototyping, customisation, and the production of complex geometries while reducing material waste and enabling on-demand production.
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to communicate a design, develop design skills using the Onshape CAD software and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
Design and make a cookie cutter
In this fun STEM teaching resource learners will discover how to create a 3D model of a basic shape in TinkerCAD and then print it using a 3D printer.
We’ve created this classroom design activity to support the delivery of key topics within design & technology (D&T) and engineering. This teaching resource activity is based on 3D printing and provides a straightforward, practical way to introduce this technology into the curriculum.
This activity introduces the concept of 3D CAD design and some of the basic tools used with CAD software. The software used for the CAD activity is the free and widely used TinkerCAD; however, this could easily be substituted for any other 3D CAD software already available in school.
The activity involves designing a basic shaped cookie cutter, then printing it out using a 3D printer. The guidance given for the printer is generic and may need to be varied depending upon the specific model(s) available in school.
This could be used as a main lesson activity to introduce basic CAD drawing skills or 3D printing. It could also be used as the basis for an integrated scheme of work, where learners subsequently use their cookie cutters to make biscuits, allowing integration with maths (measuring out ingredients) and food technology skills.
Tools/supplies needed:
Computer with TinkerCAD
3D Printer
PLA filament of an appropriate diameter for the equipment available
Optional (for starter): examples of plastic cookie cutters
Follow our step-by-step guide on how to design and make a cookie cutter
Learners will design and make a cookie cutter using CAD and 3D printing.
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing is an area of huge growth, with applications ranging from small plastic parts to printing metal bridges in place over rivers!
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to develop skills in CAD and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Product integration - Design the casing for your food temperature probe
In this activity students will design a prototype for a casing and housing a food temperature probe.
The activity can be used as a follow-on activity from our Micro:bit food temperature probe design project. It’s part of a series of resources which support the use of the BBC micro:bit in design and technology (DT) or computing lessons.
Activity: Designing the casing for a food temperature probe
This activity tasks students with turning a BBC micro:bit food temperature probe into a finished product.
Students will need to consider aesthetics and ergonomics, how it can securely enclose and fit the food temperature probe, and also which materials should be used that are fit for purposes. Students will sketch their casing ideas, adding notes explaining their design choices.
Students can also create a prototype of their design using modelling materials (e.g., card).
Download our activity overview for a detailed lesson plan on product integration.
The engineering context
Integrating programmable systems within products is an important part of the design process when working with electronic products and systems. Not only does the system have to function correctly, the finished product also has to be commercially viable in the sense that it must be cost-efficient to manufacture, and attractive enough for potential customers to want to buy.
Suggested learning outcomes
By the end of this lesson, students will be able to develop a design for a fully integrated electronic product. They’ll also be able to annotate their ideas using technical language.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation
Structural engineering
In this activity students will use case studies to investigate how architectural and building issues can be resolved.
It can accompany our Structural engineering starter and How to design a spaghetti roof structure activities as part of a series of activities that explores structural engineering.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Exploring how architectural and building issues can be resolved through real-life case studies
Students will view the design of the O2 arena by watching our Sound design video. They will also investigate the design of Stanstead Airport by viewing our structural engineering presentation. They will look specifically at the requirements of the buildings and the constraints in terms of structural design. They will also explore the design solutions used to overcome potential issues. This will form the stimulus for students to investigate structures in detail. The students will then be asked to explore possible solutions to a given structural design challenges.
Download our activity overview for a detailed lesson plan on structural engineering for free!
The engineering context
Iconic structures don’t just happen by accident. When designing large buildings, there will often be challenges that need problem solving such as eliminating columns for large open spaces. Engineers need structural knowledge to be able to create innovative designs that are safe, functional, and aesthetic.
Suggested learning outcomes
Students will learn how to identify the key features of structural components. They’ll also know how to identify the various pressures a structural element can undergo and then apply their knowledge of structure to design an effective solution to overcome specific issues.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
Power station event tree analysis
Assessing the probability of a particular situation occurring in a power station
In this lesson students will use event tree analysis to roleplay an exercise where they quantify the risk of safety systems failing in a power station.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics.
In this activity, students will roleplay the following scenario:
‘A power station experiences a loss of coolant to its reactor about once per year. To prevent a dangerous explosion, a set of controls are in place. Firstly, an alarm which alerts the operator, this works on 99% of occasions. If this does fail various other systems will become operational to monitor the issue and prevent disaster.’
Using the examples in our Power station event analysis handout and Event analysis presentation, students will learn how event tree analysis can be used to model the probability of the risk of safety systems failing. Students can also use our Event analysis simulator tree spreadsheet to run simulations to check their workings.
Download our activity overview for a detailed lesson plan (including answers) for teaching students about event tree analysis.
The engineering context
Event trees allow engineers to visualise the chain of events that could lead to system failures. Analysing the probabilities of these events helps them understand the likelihood of various outcomes as part of their efforts to design measures that can help to mitigate risks.
Suggested learning outcomes
In this lesson, students will learn about frequency trees, probability, and relative frequency.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
Product analysis with the BBC Microbit
Analyse an existing personal alarm system
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day.
In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will carry out an analysis of an existing, commercially available personal alarm system.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Testing fitness levels
In this activity students will learn about hypotheses by looking at heart rate data and how the use of computer games affects fitness.
This lesson follows our Wii Fitness activity, which provides students with an opportunity to collect fitness data which they can use as evidence to debate whether people should be encouraged to engage in computer-based sport activities.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and science.
Activity: Making hypotheses on how the use of computer games affects fitness
In this activity students will review their results from our Wii Fitness investigation to form a hypothesis on how different activities affect heart rates. Students must consider the validity and size of the data set collected and work through a series of questions to explore if the data is sufficient to confirm their initial hypotheses.
Download our activity overview for a starter lesson plan on hypotheses for free!
The engineering context
Engineering often involves problem-solving, and hypothesis based on initial observations can help engineers quickly define the potential cause of a problem. Hypothesis helps engineers to interpret data and can even guide them towards designing tests to make sure that the correct data is being gathered. This systematic approach can help to quickly validate or refute hypothesis, allowing engineers to find the right solution for the problem at hand.
Suggested learning outcomes
Students will be introduced to hypotheses and know how to create one from using a data set. They’ll also be able to evaluate the suitability and validity of the data collected as well as explain how results and ideas can be changed when we consider other variables.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
Structural engineering starter
In this activity students will investigate the design of roofs in terms of purpose and structure.
This activities accompanies our Structural engineering and How to design a spaghetti roof structure resources as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend basic knowledge of structures to students by providing a real-life context. It is not intended to form an introduction to structures.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Looking at the style and purpose of different roofs
This activity will introduce students to basic structural concepts by looking at the familiar context of roofs.
Students will start by viewing our Structural engineering starter presentation to discuss the purpose and different styles of roofs. They will next consider how their own roof might be structured. They will then be introduced to key terms relating to structural engineering such as tension, compression, structs and ties to give them context for subsequent engineering activities.
By working through our presentation, students will be asked to identify which structural members are in tension and compression.
Download our activity overview for a starter lesson plan on structural engineering for free!
The engineering context
Ingenious structural engineering has been responsible for many impressive roofs such as the O2 Arena, Stanstead Airport or Beijing National Stadium. Understanding roofs can be a gateway to appreciating the ingenuity behind larger structures like bridges, skyscrapers, and other structures that form our built environment.
Suggested learning outcomes
At the end of this lesson students will be able to identify the key features of a structural component. They’ll also know how to identify the various pressures a structural element can undergo. They will be able to apply their knowledge of structures to a given problem in order to design an effective solution.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
How to design a spaghetti roof structure
In this hands-on activity students are challenged with designing and engineering a spaghetti roof structure.
It should follow our Structural engineering starter and Structural engineering as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend a leaner’s basic knowledge of structures by providing a real-life context. It is not intended to form an introduction to structures.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Designing and engineering a spaghetti roof structure
In this fun activity, students will explore structural engineering principles by designing and building a strong, lightweight roof structure using spaghetti. The challenge comes from having to use the smallest amount of spaghetti and glue possible to keep the structure light and strong.
One their spaghetti roof is built, students must identify which areas are in tension and which are in compression so that they decide which parts of their structure need strengthening.
Download our activity overview for a detailed lesson plan on structural engineering and how to design a roof structure for free!
The engineering context
Virtually every building needs a roof. Sometime the function of the room can be simple, it just needs to be strong and light so that it doesn’t fall down. Other times, more ergonomic considerations need to be taken into consideration such as weatherproofing, aesthetics, acoustics, insulation and fire resistance.
Civil engineers must also be able to identify areas of tension and compression in existing structures, such as older buildings or in buildings that are having renovation work done, in order to be able to make recommendations for that will strengthen and support the existing structure.
Suggested learning outcomes
This lesson will teach students how to identify the key features of a structural component. They’ll learn how to identify the various pressures that a structural element can undergo and also be able to apply their knowledge to create solutions to given problems.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
Marketing a product
Promoting a product to a particular target user group
This marketing lesson revolves around designing, branding, and marketing a new Nintendo Wii product.
Students will be tasked with promoting a product to a particular user group, honing in on teamwork, creativity, and entrepreneurial skills. Make your pitch’ will provide students with an opportunity to explore and understand their chosen user group in detail through the analysis of a series of audio pitches.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT).
Activity: Promoting a product to a particular target user group
The activity consists of defining what a pitch is and analysing three radio adverts (pitches) attached in the Audio Radio Pitch (Presentation). The class will identify the unique selling point of the product, the specific user group targeted, and whether they believe the advert is successful, giving reasons for their opinion. Before proceeding to slide 3 of presentation, students will be asked, “What makes an effective pitch?” They will compile a list based on their evaluations of the three radio audio clips. Slide 2 will then be shown for comparison.
The engineering context
From designing a new video game console or inventing an innovative piece of tech, this activity will show students how understanding user needs and preferences is crucial in creating products that people want to buy. This lesson will also highlight the importance of effective communication in the form of product pitches.
Suggested learning outcomes
By the end of this lesson, students should be able to explain why it is crucial to understand what a user wants when designing and marketing a product. They should also be able to define what a ‘pitch’ is and design a ‘pitch’ aimed at a specific user group or client. This understanding will empower them not only to create effective marketing strategies but also to appreciate the importance of user-focused design in product development.
Download our activity sheet for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
Please do share your highlights with us @IETeducation.
Water aqueduct shapes
Calculate the cross-sectional areas of different aqueducts to determine which is most effective
In this STEM activity students will investigate different aqueduct shapes to determine which is the most efficient design.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and engineering.
Activity: Calculating the cross-sectional areas of different aqueducts
In this lesson, students must calculate the cross-sectional area of various aqueducts to determine which one is most effective in terms of least water lost via evaporation.
Using our Aqueduct presentation, learners will be introduced to the engineering behind aqueducts by estimating the volume of water follow through the aqueduct in one second.
Students will then calculate the cross-sectional areas of various aqueduct shapes, including rectangles and trapezoids. To do this, learners must apply their understanding trigonometry to find the missing side lengths. Alternatively, students can use this GeoGebra file to calculate the area of the trapezium.
Download our activity overview for an introductory lesson plan on trigonometry for free!
The engineering context
Aqueducts are constructed to carry water across gaps such as valleys or ravines. In modern engineering, the term aqueduct is used for any system of pipes, ditches, canals, tunnels, and other structures used for this purpose. Aqueducts can be used to enable water to be transported to areas where it is in short supply.
Suggested learning outcomes
In this activity students will apply their knowledge of mathematics such as calculating the area of a rectangle and trapezium or the volume of a cuboid. They will also be able to specifically apply their knowledge of trigonometry. Finally, they’ll learn how to plot graphs using a table of values.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Water wheel construction
Calculating the angles and lengths of components in a water wheel
In this starter activity students will use a water wheel model to determine various angles and lengths.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and engineering.
Activity: Calculating the angles and lengths of components in a water wheel
Students will review our presentation, which explains the structure of a water wheel. Students are tasked with calculating the central angle of the water wheeling by diving 360 degrees by the number of equally spaced spokes.
Learners must then find the size of a specified angle and two sides of a shape by identifying familiar shapes within our water wheel diagram (e.g., a type of triangle).
Students can approach this in more than one way, using either trigonometry or by sketching a scale drawing. After the lesson is complete, there can be a class discussion on the accuracy and usefulness of both methods.
Download our activity overview for an introductory lesson plan on calculating angles and lengths in a water wheel for free.
The engineering context
Mathematical modelling is often used in manufacturing, construction, and civil engineering, where mathematical shapes and principles are used by engineers to inform design specifications, architectural drawings, and design schematics.
Suggested learning outcomes
In this activity students will learn about the angle properties of a regular polygon and an isosceles triangle. Learners will use the knowledge of trigonometry to find the length of a side and also be able to draw a scale diagram of a triangle for the purposes of construction.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation
Wearable antennas
Learning about how wireless technology can used for personal health care
In this activity students will discover how wireless electronic systems can be used to improve health care.
This topic investigates the driving technology behind body centric communications. Students will explore current health applications of wireless health care devices and learn about the possibilities for the future as well as the ethical issues surrounding these advancements.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT) and science.
Activity: Learning about how wireless technology can used for personal health care
Students will firstly work through our Pacemaker case study, where they must explain why someone with a pacemaker needs to be cautious around certain sources of radiofrequency energy. They will then draw a labelled diagram of a heart, pacemaker, and connecting wire (BCA), with annotations explaining how the pacemaker helps with heart problems.
Students will then review our Body Centric Antenna (BCA) case study where a BCA increases the speed at which data can be made available to health professionals. After reading the case study, students must produce then a short leaflet that explains the potential health benefits of BCAs.
Download our activity overview for an introductory lesson plan on wearable healthcare technology for free!
The engineering context
Body centric communications have abundant applications in personal healthcare, smart homes, personal entertainment, identification systems, space exploration and the military.
Suggested learning outcomes
By the end of this activity students will understand that an electronic decision-making system consists of an input, a processor, and an output. They will also know that changes in physical factors will result in an energy transfer in a transducer (i.e., a transducer can be used as a sensor). Finally, they will be introduced to some of the social uses of electronic systems in health care.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation
What is a program?
Understand the importance of clear instructions when developing a program
In this starter activity, students are introduced to what is meant by a program through our fun maze route activity.
For the purposes of this activity a program is a set of step-by-step instructions that must be followed. Learners will therefore be asked to create a set of instructions that will solve a problem.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT).
Activity: Understanding the importance of clear instructions when developing a program
In this activity students will complete a practical activity that will help them to understand what programme is.
Learners will get into pairs and, with one person having to navigate their (blindfolded) partner through a simple maze by giving them verbal instructions.
After this activity, there will be a class discussion on the importance of clear and concise instructions. Students will then reflect on what a programmable system is (i.e., a set of instructions) and discuss how this links to the activity that they’ve just completed.
Download our activity overview for an introductory lesson on programmes for free!
The engineering context
Programming is an essential skill in the 21st century world. From mobile phones and tablet computers to large passenger aircrafts, our everyday lives are shaped by systems that have been programmed. These systems keep us safe, get us to work/school or allow us to communicate with our friends and family.
Suggested learning outcomes
By the end of this lesson students will learn that a program is simply a set of step-by-step instructions. They will also understand the importance clear instructions when developing a program.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation
Making a pinhole camera
With our history of design KS2 lesson plan teaching resource, learners will make a pinhole camera inspired by the early photography of the Victorian era.
Inspired by the theme of the Victorians, this activity supports the teaching of design and technology in context by making a pinhole camera based on early Victorian photography technology.
In this classroom project learners will learn about early camera obscuras developed during the Victorian era. They will then make their own pinhole camera from a small shoebox, based on this early technology. Finally, they will test their camera and observe how it works.
This teaching resource activity could be used as a main lesson activity to teach learners basic marking out and model making skills. It could also be used as part of a wider scheme of learning focussing on the history of design, technology and engineering, alongside other Victorian-themed IET resources.
We’ve created this teaching resource design activity to support the delivery of key topics within science, history, design & technology (D&T) and engineering.
Activity: Make a pinhole camera inspired by the early photography of the Victorian era
Learners will discuss the origins of cameras and photography in Britain and the United Kingdom including the fact that in Victorian times many women took up taking photos as a hobby. Learns will then make their own pinhole camera and test it by going into a dark room, turning on a lamp and pointing the camera towards it.
Tools/supplies needed:
Cardboard box or shoebox
Wax paper
Parcel tape
Craft knife
Scissors
Pin to make the pinhole
Pencil and ruler
Follow our step-by-step guide to make a pinhole camera
The Engineering Context
Understanding about the history of engineering and design helps engineers to learn from past successes and mistakes. For example, learning about early photography us to understand the science behind these ideas and how this can be used and developed to make better products in future.
Suggested learning outcomes
This resource combines Science, Design and Technology, Maths and Engineering with History, with the aim that the learners will know what is meant by the Victorian era and the dates it covered, be able to make and test a pinhole camera and be able to explain how the pinhole camera works.
Download our activity sheet and other teaching resources for free!
All classroom activity sheets and supporting teaching resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Light bulb experiment
With our science and design and technology KS2 lesson plan teaching resource, learners will perform an experiment to learn how filament light bulbs and basic electricity works.
Inspired by the theme of the Victorians, this activity supports the teaching of design and technology in context by looking at the key events that defined the Victorian era, and how they have influenced engineering developments and society today.
In this classroom activity learners will learn about the Victorian era and the changes to how people lived and worked during this time. They will learn about how Thomas Edison invented the first practical light bulb before building a simple light bulb circuit to investigate how it works.
This teaching resource activity could be used as a main lesson activity to teach learners about the influence of historical events on engineering and society as a whole. It could also be used as part of a wider scheme of learning focusing on the history of design, technology and engineering, alongside other Victorian themed IET resources.
We’ve created this teaching resource design activity to support the delivery of key topics within science, history, design & technology (D&T) and engineering.
Activity: Learn about how filament light bulbs and basic electricity works
Learners will discuss what the Victorian era was, when it occurred and why it was such an important period of time. They will learn about Thomas Edison’s light bulb and then build a bulb circuit and prove that it works.
Tools/supplies needed:
AA battery and holder
1.5 V lamp and holder
Red crocodile clip
Black crocodile clip
Pens and pencils
Lined paper
The Engineering Context
Understanding about the history of engineering and design helps engineers to learn from past successes and mistakes. For example, learning about electric lighting helps us to understand the science behind these ideas and how this can be used and developed to make better products in future.
Suggested learning outcomes
This resource combines Science, Design and Technology and Engineering with History, with the aim that the learners will be able to make a simple light bulb circuit and understand how a simple light bulb circuit works.
Download our activity sheet and other teaching resources
All classroom activity sheets and supporting teaching resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Make a Victorian timeline
With our history of design and technology and engineering KS2 lesson plan teaching resource, learners produce a timeline of key events that took place during the Victorian era.
Inspired by the theme of the Victorians, this activity supports the teaching of design and technology in context by looking at the key events that defined the Victorian era, and how they have influenced engineering developments and society today.
In this classroom activity learners will learn about the Victorian era and the changes to how people lived and worked during this time. They will then produce a timeline of key events that occurred from when Queen Victoria was born to when she died. For example, the opening of the London Underground and the development of the first national police force.
This teaching resource activity could be used as a main lesson activity to teach learners about the influence of historical events on engineering and society as a whole. It could also be used as part of a wider scheme of learning focussing on the history of design, technology and engineering, alongside other Victorian themed IET resources.
We’ve created this teaching resource design activity to support the delivery of key topics within history of design, design & technology (D&T) and engineering.
Activity: Producing a timeline of key events that took place during the Victorian era
Learners will discuss what the Victorian era was, when it occurred and why it was such an important period of time. They will then go onto producing a timeline of key events that occurred during the Victorian era, adding pictures to make the timeline more engaging to look at.
Tools/supplies needed:
Pens and pencils
Ruler
The Engineering Context
Understanding about the history of engineering and design helps engineers to learn from past successes and mistakes. For example, learning about early photography or electric lighting helps us to understand the science behind these ideas and how this can be used and developed to make better products in future.
Suggested learning outcomes
This resource combines Design and Technology and Engineering with History, with the aim that the learners will be able to produce a timeline of key events that occurred during the Victorian era and understand how the Victorian era shaped engineering and society today.
Download our activity sheet and other teaching resources
All classroom activity sheets and supporting teaching resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
Victorian engineering research
Inspired by the theme of the Victorians, this activity supports the teaching of design and technology in context by investigating the key inventions made during the Victorian era, and how they have influenced engineering today.
In this classroom activity learners will learn about the Victorian era and the changes to how people lived and worked. They will then discuss how technology and engineering moved forward during the Victorian era, before researching at least one engineering invention made during that time. They will then present their findings to the class.
This teaching resource activity could be used as a main lesson activity to teach learners about the impact of Victorian inventions on modern engineering and society as a whole. It could also be used as part of a wider scheme of learning focussing on the history of design, technology and engineering, alongside other Victorian themed IET resources.
We’ve created this teaching resource design activity to support the delivery of key topics within science, history, design & technology (D&T) and engineering.
Activity: Using the internet to research engineering inventions that were made during the Victorian era.
Learners will discuss what the Victorian era was, when it occurred and why it was such an important period of time. They will then go on to use the internet to research one engineering invention that was made during the Victorian era and produce a short presentation about it which they should make to the class.
Tools/supplies needed:
Computers with internet and presentation software
Whiteboard projector or interactive whiteboard
The Engineering Context
Understanding about the history of engineering and design helps engineers to learn from past successes and mistakes. For example, learning about early photography or electric lighting helps us to understand the science behind these ideas and how this can be used and developed to make better products in future.
Suggested learning outcomes
This resource combines Design and Technology and Engineering with History, Literacy and Computing/ICT with the aim that the learners will be able to research engineering inventions that were made during the Victorian era and understand the impact of Victorian inventions on engineering and society today.
Download our activity sheet and other teaching resources
All classroom activity sheets and supporting teaching resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
Make a paper house
In this activity learners will design, make and assemble a fold out pop-up structure that shows a self-contained, four room dwelling.
This activity could be used as a main lesson activity to teach learners about the design of folding structures using graphic materials; alternatively, it could be used as an introduction to designing for a client, where the learners could be given a target group such as wheelchair users or a young family. This could also be used as one of several activities within a wider scheme of learning focussing on structures and Design for Living.
Resources required:
Scissors
Paper or Card
Glue
Rulers
Pens, coloured pencils or paint
Paperclips
Optional: three pre-made rooms
Optional: a pre-made assembled example
Download our activity sheet and other related resources for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation.
Please do share your highlights with us @IETeducation.
Volcano Science experiment
In this fun STEM activity, learners will make an erupting volcano science experiment using sodium bicarbonate and vinegar.
This activity can be used as a main lesson activity to teach learners about chemical reactions, which are processes that change one or more substances into different substances. This science experiment can also explain foams, which are liquids or solids containing gas bubbles.
Activity: Erupting volcano experiment
This activity is one of a set of free STEM resources designed to help learners use seasonal themes to support the delivery of key topics in Design and Technology, Science, and Mathematics (STEM). This resource is part of a group for the Summer and can be used in school or at home. It involves making a model of an erupting volcano using baking soda and vinegar.
When sodium bicarbonate and vinegar are mixed, they react to produce carbon dioxide gas. This gas is what causes the foaming mixture and the eventual dissolution of the solid. The new liquid solution that is produced is relatively safe, but it is important to avoid getting it in your eyes or on your clothes. Safety glasses should be worn if required by the school’s risk assessment. The lava produced can be disposed of by washing it down the sink with plenty of water.
How long will this activity take to complete?
This activity will take about 40-65 minutes to complete. Teachers can download the activity sheet below for a detailed lesson plan. Those completing the activity at home can download the family activity for a step-by-step guide on making an erupting volcano at home.
The engineering context
Engineers use chemical reactions to solve a variety of problems. For example, rocket engineers mix fuel and oxidiser to create a reaction that produces thrust, propelling the rocket into space.
Suggested learning outcomes
By the end of this activity, students will be able to make an erupting volcano using bicarbonate and vinegar, and they will understand that a reaction is when one or more substances are changed to a different substance.
Download the free activity sheet for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation