Hero image

524Uploads

214k+Views

114k+Downloads

Investigating simple linkages
IETEducationIETEducation

Investigating simple linkages

(1)
Looking at linkages using card models In this activity pupils will make models of three simple linkages from card. This is a fun STEM activity and a great way for KS2 to learn all about simple linkages. This resource could be used as a stand-alone activity or as an introduction to a design and make project, such as a greetings card with moving parts, a moving poster or display or a ‘grabber’ to pick things up. Activity: It can be advantageous to use a hole punch to create the holes where needed as this reduces the risk of tearing. Alternatively, the holes could be made by pushing through the card with a sharp pencil, into a piece of modelling clay. If tearing does occur, this can be addressed by using sticky tape on the rear of the part or background. For a moving pivot, the fastener goes through the two moving card parts and is opened up; for a fixed pivot, the fastener goes through a moving part and the background is opened up. Guides can be attached using sticky tape at each end. Whilst glue could be used, in practice this may not provide a sufficiently strong joint. As an extension activity students could produce a composite linkage that changes a single input motion into different types of output motion. Alternatively, students could create a moving model of an animal. The presentation can be downloaded below and includes detailed images for the making tasks plus additional support information for the teacher, such as examples of linkages made by pupils. Tools/resources required Copies of the linkages handout, printed on card, 1 per pupil (plus spares) Scissors Sticky tape Glue sticks Optional: Hole punches (ideally single hole punches) Pre-made models of each linkage, for demonstration The engineering context A mechanism is a group of parts that allow or change movement in some way. In practice almost all products that contain moving parts – ranging from scissors to pop-up books to car engines – include some form of mechanism. Suggested learning outcomes By the end of this activity students will be able to identify the parts of a linkage, they will know how simple linkages change the direction of motion and they will be able to cut and assemble simple linkages using card and scissors. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to make a cardboard car
IETEducationIETEducation

How to make a cardboard car

(1)
Design and make a card model of a car body from a net In this engaging engineering activity for kids, pupils will learn about nets, wheels, and axles. They will combine these technologies to make the base and body for a cardboard car. This activity introduces and builds on knowledge of nets to make a complex three-dimensional shape suitable for the body shell of a car. It could be used at KS1 to develop practical skills making nets. Pupils may want to customise their car bodies by adding colour or graphics. However, please note that this needs to be done before the body is stuck together. Furthermore, it can reduce the risk of tearing if this is done before the net is cut out. As an optional extension, students could also customise the design of their vehicles, or even design their own body shells. The fold lines on the handout are all ‘valley’ folds – that means they are on the inside angle when produced. If they were on the outer face they could be referred to as hill folds. This activity will take 30-60 minutes to complete. Tools/resources required Copies of the car body handout, printed on card, 1 per pupil (plus spares) Scissors Glue sticks Optional: Sticky tape or double sided sticky tape Coloured pencils Hole punches (ideally single hole punches) Pre-made model of the example shape, for demonstration (this could be made large size, for example by printing out on A3 card) The engineering context Nets are used to make almost all forms of card packaging, ranging from simple cereal boxes with clear polymer ‘windows’, to display stands. A large supermarket may contain hundreds of thousands of different nets! Suggested learning outcomes By the end of this activity learners will know that 3D shapes can be constructed from nets using folds and tabs and they will be able to make a complex 3D shape from a 2D net. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Build a car that moves
IETEducationIETEducation

Build a car that moves

(1)
Learn how to make the base of a moving vehicle from card Build a car with axles that moves! Budding inventors engineer the base and body for a model car made from card with wheels and axles. This is a fun practical activity for participants to make a simple 3D shape from a 2D net. The KS1 DT activity then introduces axles and wheels to enable the car to move. Activity info, teachers’ notes and curriculum links In this activity, pupils will make the base of a moving vehicle to understand how cars are designed and how axles work to allow cars to move. Download the free resources! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Copies of the car base handout, printed on card, 1 per pupil (plus spares) Axles, 2 per pupil – for example, wooden skewers Plastic tubing – this can be short sections cut from drinking straws Wheels, 4 per pupil Scissors Glue sticks Optional: Sticky tape or double-sided sticky tape Hole punches (ideally single hole punches) Coloured pencils Pre-made model of the base, for demonstration (this could be made large size, for example by printing out on A3 card) Download the activity sheets for free! The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales And please do share your classroom learning highlights with us @IETeducation
Maths for engineering poster
IETEducationIETEducation

Maths for engineering poster

(1)
Secondary classroom poster where your students can find out about the equations and formulae needed for engineering. Download the single poster or order a full set of posters for free from the IET Education website.
Core maths for designers poster
IETEducationIETEducation

Core maths for designers poster

(1)
Secondary classroom poster where your students can learn about the core maths principles and equations essential in design. Download the single poster or order a full poster set for free from the IET Education website.
Product design: create an ergonomic shopping bag
IETEducationIETEducation

Product design: create an ergonomic shopping bag

(1)
Designing an ergonomic shopping bag carrier for older adults In this activity students will design an ergonomic product aimed at older adults aged 60 and above. They will make use of anthropometric data to ensure that the product is fit for purpose. It’s an ideal product design lesson as it focusses on how ergonomics and anthropometric data can be used for making a shopping bag. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in design and technology (DT). Our teaching resources explain the concepts of ergonomics and anthropometrics. Using this information students will design a product that assists with carrying several shopping bags in just one hand, ensuring it’s ergonomically designed for the carrier’s comfort. They’ll use anthropometric data to tailor the product to the target audience while considering its aesthetic appeal. After sketching and annotating their shopping bag designs, students share their work with a partner who will give feedback on what works well as well as what might be improved. Download our activity overview and presentation and ergonomic product design handout for a detailed lesson plan for teaching students about ergonomic design. What does anthropometric mean in design and technology (DT)? In design and technology (DT), anthropometric data refers to measurements of the human body. This might include measurements like hand size, height, and limb proportions. When students design products, they can use anthropometric data to ensure their product designs are comfortable, safe, and efficient for the intended users. The engineering context Designers must consider how people will interact with their products and systems. The use of ergonomics and anthropometric data allows them to make sure their products are comfortable and efficient to use. Suggested learning outcomes Students will be able to design an ergonomic product (specifically, a shopping bag) that meets the needs of older adults. They’ll understand what is meant by anthropometric data and be able to use it for aid the design of a product. They’ll also be able to communicate their design ideas using sketches, notes and annotations. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Filtering water
IETEducationIETEducation

Filtering water

(1)
Design and build your own water filtration system Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. Activity info, teachers’ notes and curriculum links This activity gets students to investigate different possible ways of filtering dirty water to improve its cleanliness by designing and building their own water filtration systems. The lesson can be extended with a practical session in which students work in small teams to investigate the salinity of different water samples – see the related extension activity ‘Water Treatment Systems’ within the related activities section below. The engineering context Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. Engineers and scientists work to provide us with safe, clean drinking water, with efficient and clean methods for disposing of our waste water and practical drainage solutions. Suggested learning outcomes Students will be able to recall the different types of impurities that can contaminate water. As well as this, they’ll know how to describe how water filtration equipment acts in several different ways to produce potable (drinkable) water. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Moving pictures with levers and sliders
IETEducationIETEducation

Moving pictures with levers and sliders

(1)
Simple sliders and levers can be used to create movement in a picture. This activity teaches participants how levers and sliders work and how they can be used to create an engaging moving picture in a card or a book. How can I teach levers and sliders? This could be used in Key Stage 1 as a stand-alone activity or as a KS1 introduction to a design and technology project, such as: a greetings card - for example, a Christmas card where Santa’s sleigh moves across the sky a story detailing a journey – for example, inspired by a book they are reading (such as ‘We’re going on a bear hunt’); alternatively, this could be a fictional journey of their own devising the development of the book could be carried out as a class activity where each table or group of pupils works together to produce one or two pages, contributing to the book produced by the full class. This could also be linked to a story-writing activity in literacy a moving display - for example, charting the different activities carried out during a day, where the slider or lever indicates the changing time. On completing either model, pupils could also apply colour to their mechanism or add details to the background. Tools/resources required Copies of the moving pictures handout, printed on card, 1 per pupil (plus spares) Plain card (for the simple slider and lever backgrounds) Split pin-type metal fasteners (1 per pupil plus spares – see image in presentation) Scissors Sticky tape Glue sticks Optional Coloured pencils Hole punches (ideally single hole punches) Pre-made models of each mechanism, for demonstration Download the activity sheets for free! The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. All activity sheets and supporting resources for this KS1 DT activity are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your learning highlights with us @IETeducation.
Renewable energy debate
IETEducationIETEducation

Renewable energy debate

(3)
Structured class debate on the location of a new wind farm There is much debate about the issues created by carbon emissions and how renewable energy sources can help resolve these challenges. Most people agree that renewable energy is a good thing, but many oppose to having wind turbines built near their neighbourhood. In this role-play activity, participants take on different roles to debate a proposed wind farm. In pairs, students discuss whether their character would be in favour of the proposed wind farm and prepare a two-minute talk to share their case with the group. Afterwards, divide the larger groups into ‘for’ and ‘against’ and bring together all the individual statements to form a strong, coherent case. Four people are chosen to give two reasons to support their argument. Activity info, teachers’ notes and curriculum links This activity has been written with a strong science bias. However, it can easily be taught in design and technology with either a systems and control approach or from a ‘sustainability’ angle, looking at the topic of wind farms and the future of energy production. The ‘sustainability’ perspective will provide an activity that could involve design and technology, geography and citizenship. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Engineering prosthetics
IETEducationIETEducation

Engineering prosthetics

(1)
Discuss the work of medical engineers and the use of smart materials for prosthetics The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts. Activity info, teachers’ notes and curriculum links This activity is a quick, engaging introduction to a lesson looking at the properties of modern materials. With the help of a series of short videos ‘Nature Reinvented’, ‘Prosthetic design’ and ‘Bionic Limbs’, students make the connection between materials, prosthetics and the way in which engineers work. The activity sheet includes teachers’ notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Flowcharts for shapes
IETEducationIETEducation

Flowcharts for shapes

(1)
Create a flowchart which identifies the properties of different shapes Flowcharts show the order in which a series of events is to be carried out. They are used for lots of purposes including; programming microcontrollers with instructions, mapping processes and sorting. Activity info, teachers’ notes and curriculum links An engaging activity in which students will make a flowchart to sort various shapes and ensure that each shape finishes in a unique place at the end of the flowchart. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
How does a Sat Nav system work?
IETEducationIETEducation

How does a Sat Nav system work?

(1)
Learn about the technology behind satellite navigation systems and discuss the pros and cons of using them Can your students consider how a GPS system functions and discuss the advantages and disadvantages of using them? This activity is suitable for KS3 and KS4 and encourages students to undertake research and produce a visual display. This activity is an engaging investigation into the uses of communication technology in the modern world. This activity is an individual activity and could be run in an ICT suite to allow students to use the internet for research. Distribute the Sat Nav handout to students. This handout gives some outline information about satellites and an un-annotated diagram. Students can cut out or copy the un-annotated diagram and add information to this to produce a visual display of how a Sat Nav system works. There are a series of questions on the Sat Nav handout. Questions 1-4 are designed to get students to undertake research on the topic of satellites and their functionalities and capabilities. This is a simple activity that will take approximately 30 minutes to complete. How does a Sat Nav system work? What we often refer to as ‘Sat Nav’ is properly called the Global Positioning System (GPS). This uses satellites that continually transmit a signal. They are like an accurate orbiting clock. The signal from at least three and up to seven satellites is received and compared by the Sat Nav device. Using some complicated maths, the Sat Nav device can work out not only where it is on the Earth’s surface, but at what altitude it is as well. The position information is compared with a map downloaded and stored by the Sat Nav device. The satellites tell you where you are, and the mapping hardware fills in the pictures of the road around you. The satellites need to have a clear path through the air to the Sat Nav device – this is normally called a clear line of ‘sight’. The engineering context Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. Download the free How does a Sat Nav system work? activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Changing perceptions with design
IETEducationIETEducation

Changing perceptions with design

(1)
Developing a marketing and branding campaign for Pure Water An essential part of a product’s identity is the logo that is used to represent it. In this activity, students will work on developing a ‘marketing and branding’ campaign for a drinking water product by Pure Water. The campaign will need to design the overall package for the scheme, including logos, slogans, adverts, podcasts, posters etc. As a class, brainstorm what the essential criteria are for an effective logo. Then participants generate a range of ideas select their best idea and develop this in a suitable form. Activity info, teachers’ notes and curriculum links This activity requires participants to apply understanding of creative thinking, product development and graphic design to a design and technology context. Download the free activity sheet! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation Tools/resources required Projector/whiteboard The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. To watch the ‘Pure water’ video, please visit the IET Education website.
Changing perceptions with design 2
IETEducationIETEducation

Changing perceptions with design 2

(1)
An engaging activity in which students will develop a marketing strategy and advertising materials for the product. It will be taught through teamwork mirroring the design process within a ‘design consultancy.’ Each team will pitch for the tender at the end of the unit, presenting ideas to the class. This activity could be taught in design & technology, with the emphasis on product design or graphics.
Engineered materials
IETEducationIETEducation

Engineered materials

(1)
This activity focuses upon how materials have been specifically engineered to provide certain qualities and characteristics. Learners will explore a range of engineered, synthetic, and smart materials, identifying why they are ‘fit for purpose’ and how they have been engineered to achieve this purpose. Children will delve into learning about the chemical, physical and mechanical properties of their chosen material. Not only will they learn about what the material looks like, both visually and at a molecular level, but also what it was designed to do, how it’s made, what it’s used for, and if its function has evolved over time. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). Activity: Researching a specifically engineered material Students will work in pairs to conduct research on a specific engineered material. They’ll be tasked with creating a fact sheet or PowerPoint presentation covering all aspects of their chosen material. This includes its chemical, physical and mechanical properties, its appearance, its intended purpose, its manufacturing process, its composition, its applications, and any evolution in its function. The completed projects can then be used as a wall display or presented to the rest of the class, promoting a collaborative learning environment. The engineering context By understanding the process of engineering materials, students can appreciate the real-world implications of engineering. This activity will help them see the creativity, problem-solving, and innovation involved in engineering, inspiring them to consider a career in this exciting field. It also emphasizes the importance of engineering in our daily lives, showcasing how man-made materials contribute to various industries and applications. Suggested learning outcomes Learners will gain a deeper understanding of how materials can be designed and made for specific characteristics and purposes. They’ll be able to identify the properties of materials required for a particular function and explore a range of engineered materials, understanding why and how they have been developed. This activity not only enhances their knowledge of science, design, and technology but also nurtures their research, presentation, and teamwork skills. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can download our classroom lesson plan below. Please do share your highlights with us @IETeducation.
Engineers can read your mind
IETEducationIETEducation

Engineers can read your mind

(1)
Explore the different technologies that engineers have developed to scan the brain The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links This activity encourages students to think about new technologies and how difficult it is to predict their future development and application. The handout ‘Reading minds’ is an introduction on how the engineering field of biomedical signal processing is helping doctors understand the brain and treat patients. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. The ‘Mind Scanner’ challenge is an extension activity that allows students to do a bit of future gazing. The challenge looks at how future compact mind scanner technology could be used and by whom - considering both ethical and economic issues. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Medical imaging
IETEducationIETEducation

Medical imaging

(1)
A closer look at the techniques used to scan brain tissue The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links An engaging starter activity making use of the short film ‘Mind Mapping’ (see related resources section below) and encouraging students to think about new technologies and how difficult it is to predict their future development and application. Students consider how engineers have created different and safe techniques of scanning brain tissue. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Microwaves and health
IETEducationIETEducation

Microwaves and health

(1)
Explore the risks associated with exposure to microwaves Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. Activity info, teachers’ notes and curriculum links This engaging activity allows students to explore the hazards and risks associated with exposure to microwaves. A microwave monitor is used to measure the microwave radiation from a microwave oven and a working mobile phone at a range of distances. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Learning more about programmable systems
IETEducationIETEducation

Learning more about programmable systems

(1)
Students discuss what they do and don’t know about programmable systems This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error. In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz. Activity info, teachers’ notes and curriculum links In this activity, learners will self-assess and plan how to extend their current knowledge of programmable systems. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Aerodynamics in action
IETEducationIETEducation

Aerodynamics in action

(1)
Through this fun and engaging STEM activity, learners will understand how aerodynamic and streamlined shapes are used in our day to day lives and the design, technology, and engineering principles behind them. This is a free resource aimed at secondary school children. Students will have the opportunity to learn about aerodynamic forces and aerodynamic design and how these design principles enhance speed and efficiency in a product. A brilliant engineering activity for kids. Students will start to understand the basic principles of aerodynamics by looking at familiar products that have been designed with ‘speed’ in mind and through identifying features common to these products. Later, they could start to explore the requirements of aerodynamic design through testing simple shapes in a wind tunnel and through water. The activity focuses on students acquiring an understanding of aerodynamics through testing, experimenting, and developing. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project. However, it can also be tackled independently from each subject. What do the images have in common? Why have they been designed in that shape? Could they be split into themed groups? As an extension students could be asked to consider the social/economic and technological benefits (and drawbacks) of each example. This will give some reasoning behind the development of the final design and illustrate how there are many different factors affecting the design. The engineering context Aerodynamics refers to the way air moves around things. Anything that moves through the air reacts to aerodynamics. Aerodynamics acts on aeroplanes, rockets, kites and even cars! Suggested learning outcomes By the end of this activity students will be able to identify areas where aerodynamics is used in real life and they will be able to describe the social/economic and technological effect of the work. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation