524Uploads
215k+Views
114k+Downloads
All resources
Animal graphics project
Learn about simple mechanisms and make an animal that moves in this fun and creative activity for kids!
Students will use templates to help them cut out the parts for a DIY cardboard animal, and they will make the parts of a simple mechanism using cams and linkages, which will be attached to a round shaft made from a skewer; This will allow the legs of the animal to move up and down slowly.
This activity could be used as a main lesson activity to teach learners about simple mechanisms and how the direction of motion can change from rotary to reciprocating.
This is one of a series of free STEM resources designed to support the delivery of key topics within science and design and technology, which could be carried out individually or in pairs. The teacher presentation could be left on the whiteboard as a supporting guide as they do this. Learners may need assistance cutting the cardboard to ensure the cuts are accurate.
As an optional extension activity, learners could add their own designs to their animal’s body and legs. Keeping the white paper template stuck to the legs allows them to be decorated as desired.
Tools/resources required
Card tubes
Wooden skewers
Glue sticks/ glue
sticky tack
Cardboard
Brass split pin fasteners
The engineering context
Mechanisms are used in almost every moving product, ranging from trains and cars to washing machines and door handles that must be pushed down to open, see-saws and scissors. They either transmit motion or change it in some way, increasing or decreasing its strength, quality, or type.
Suggested learning outcomes
By the end of this activity, students will be able to understand that a linkage and cam can create movement, they will be able to make an amazing animal from graphics materials, and they will be able to use cams and linkage to make the legs move on the amazing animal.
Download the Animal graphics project activity sheet for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Christmas emoji
Design an emoji that reflects the festive season in this fun graphics activity
In this fun and creative activity, learners will use the theme of the festive season to design an emoji. They will think about what the festive season means to them and list their favourite things about this time of year. They will then use this list to sketch initial ideas for their own emoji before producing a final design that could be used on a phone or computer.
This is one of a series of free STEM resources designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology, and Engineering.
This activity could be used as a main lesson activity to teach about sketching skills, following a brief and the use of modern communications technologies. It could also be used as part of a wider scheme of learning focusing on the design process or as a one-off transition activity.
Resources required
A round coin (e.g. two pence or ten pence)
A4 or A3 paper
Graph paper (or sheet from the resource)
Pencils, coloured pencils, paints and/or felt tip pens
A fine-liner pen for detailing on sketches
A pair of compasses or round object to draw large circles (e.g. a drinking cup or mug)
The engineering context
The development of ideas is fundamental to the work of the engineer working to solve a problem. To be able to work to a brief is the start of all engineering problem-solving activities.
Suggested learning outcomes
By the end of this activity, students will know the purpose of emojis, they will be able to understand how to design an emoji using a given theme, and they will be able to sketch with confidence!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved U.K. nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your emojis with us @IETeducation! #SantaLovesSTEM.
Jingle bells density science experiment
In this this fun Christmas STEM experiment, we see the effect that density has on objects and make some jingle bells dance!
Download the STEM activity sheet below for free. If you’re up for an extra activity, help our jingle bell finds its way back to the Christmas tree in our maze.
And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Engineering prosthetics
Discuss the work of medical engineers and the use of smart materials for prosthetics
The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts.
Activity info, teachers’ notes and curriculum links
This activity is a quick, engaging introduction to a lesson looking at the properties of modern materials. With the help of a series of short videos ‘Nature Reinvented’, ‘Prosthetic design’ and ‘Bionic Limbs’, students make the connection between materials, prosthetics and the way in which engineers work.
The activity sheet includes teachers’ notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Aerodynamics in action
Through this fun and engaging STEM activity, learners will understand how aerodynamic and streamlined shapes are used in our day to day lives and the design, technology, and engineering principles behind them.
This is a free resource aimed at secondary school children. Students will have the opportunity to learn about aerodynamic forces and aerodynamic design and how these design principles enhance speed and efficiency in a product. A brilliant engineering activity for kids.
Students will start to understand the basic principles of aerodynamics by looking at familiar products that have been designed with ‘speed’ in mind and through identifying features common to these products.
Later, they could start to explore the requirements of aerodynamic design through testing simple shapes in a wind tunnel and through water. The activity focuses on students acquiring an understanding of aerodynamics through testing, experimenting, and developing.
This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project. However, it can also be tackled independently from each subject.
What do the images have in common? Why have they been designed in that shape? Could they be split into themed groups?
As an extension students could be asked to consider the social/economic and technological benefits (and drawbacks) of each example. This will give some reasoning behind the development of the final design and illustrate how there are many different factors affecting the design.
The engineering context
Aerodynamics refers to the way air moves around things. Anything that moves through the air reacts to aerodynamics. Aerodynamics acts on aeroplanes, rockets, kites and even cars!
Suggested learning outcomes
By the end of this activity students will be able to identify areas where aerodynamics is used in real life and they will be able to describe the social/economic and technological effect of the work.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Spaghetti bridge
Building a bridge from spaghetti
Working in teams, participants have 45 minutes and 15 pieces of spaghetti to build a bridge. How to make a bridge? Teamwork with spaghetti! After this time, the structures are put to the test to see which is the strongest by hanging an increasing load from each bridge until it fails.
Bridges are structures that are designed to support a load, such as the cars and lorries that need to cross above a river. The structure of a bridge has a significant affect upon its strength and its stiffness. A bridge made from square shapes can be made significantly more rigid and less likely to collapse by adding reinforcement to form triangles. This principle is widely used in civil engineering.
Activity info, teachers’ notes and curriculum links
This activity could be used in Key Stage 2 as a stand-alone design and technology or maths activity, as a focused task to develop skills in the use of the glue gun, or as part of a structures project investigating bridges. This hands-on STEM playing and learning resource is science and maths for KS2.
Tools/resources required
1-2 packets of spaghetti
Glue guns (one per team)
Optional:
Baseboards or A3/A4 pieces of cardboard for use as baseboards when using glue guns
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
And please do share your classroom learning highlights with us @IETeducation
Christmas cracker jokes
Use a net to make a booklet, adding funny cracker jokes and designs to the pages where needed in this festive activity for kids.
This activity could be a main lesson to teach learners how to use nets to make useable objects. It could also be used as one of several activities within a wider scheme of learning focusing on understanding the use of nets in maths.
The testing of the jokes could be linked with learning in English, as they involve writing and oral expression of the cracker jokes.
This is one of a series of free STEM resources designed to allow learners to use Christmas themes to support the teaching of the primary National Curriculum. They are designed to support the delivery of key topics within maths and design and technology. This resource focuses on the use of a net to make a small booklet of funny cracker jokes, and these could be used as an alternative to the corny jokes often found in Christmas crackers!
Nets are important as they allow 3D objects to be made when folded.
Making the booklet:
Step 1 – Download the That’s a Cracker activity sheet. Identify the solid and dotted cutting lines.
Step 2 – Add the Christmas jokes.
Step 3 – ⚠ Safely cut out the booklet net using scissors.
Steps 4a and 4b – Fold the booklet as directed.
Step 5 – Now test out the jokes on friends!
As an optional extension activity, students could create and add their own designs and jokes to the booklet pages.
How long will this activity take?
This activity will take approximately 40-60 minutes to complete.
The engineering context
Engineers must regularly use mathematics knowledge and skills as part of their everyday job. They use nets to make scale models of buildings and other structures, as well as packaging for other products.
Suggested learning outcomes
By the end of this activity, students will know that graphics products can be made from nets, they will be able to add text to a graphic product, and they will be able to make a booklet from a net.
Download all the Christmas cracker jokes activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your classroom highlights with us @IETeducation! #SantaLovesSTEM.
Daylight hours maths activity
In this fun maths activity, students will look at the way the length of the day changes over the year.
They will use a data sheet to plot a graph, then interpret the data to work out the date of the longest and shortest days of the year in the United Kingdom.
A free activity sheet can be downloaded.
And please do share your poetry highlights with us @IETeducation! #SantaLovesSTEM
Make a trap to detect Santa
Try out this fun science experiment, designed for primary school students, to catch Santa as he delivers your presents by creating an electronic trap!
The engineering context
Engineers need to be able to understand how electrical circuits are drawn and communicated; This includes the use of circuit symbols to produce circuit diagrams and schematics. This knowledge could be used when investigating, designing or making electrical and electronic circuits in the future.
What equipment will you need?
A thin piece of sponge – a washing up sponge is great, but make sure it is completely dry, Scissors, Masking or sticky tape, Aluminium kitchen foil, 3 crocodile leads (you will need another 2 if you do the extension task), A 2 x AA battery pack, A 3V buzzer
How to do it
Step 1 - Cut a square of the thin sponge approximately 10cm x 10cm.
In the centre, cut a hole approximately 4cm in diameter.
⚠ Be careful when using scissors. Always have an adult on standby in case you need help.
Step 2 - Cut two pieces of aluminium foil slightly smaller than your piece of sponge.
Step 3 - Using masking or sticky tape, tape one piece of aluminium foil to the top of the sponge and the other to the bottom. The tin foil pieces MUST NOT touch if the sponge is not pressed down but should once it is pressed.
Step 4 - Attach one crocodile lead to the top piece of foil and one to the bottom piece.
You have now built the pressure pad for your Electronic Santa Detector, but you need to put it in a circuit for something to happen. Follow the diagram in the activity sheet below to connect the components with your crocodile leads.
When you gently press the centre, the buzzer should sound.
Now all you need to do is leave it somewhere you think Santa will stand when he delivers your presents. Just inside your bedroom door, perhaps, or at the end of your bed with your stocking.
When he steps on the pressure pad, the buzzer will sound and alert you to him being in the room.
You might also want to disguise it so it is not noticeable. Santa is old and wise, and if he sees it, he will know not to step on it!
Download the Make a trap to detect Santa activity sheet for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Insulator experiment
Protect Santa’s packed lunch with this fun insulator experiment
This activity can function as a fun science experiment for kids in which students will observe the effects of thermal energy on change of state.
What equipment will you need?
Ice cubes with a small Christmas toy frozen inside (cake decorations are ideal for this or any small Christmas toy/decoration), 5 different types of material, which could include bubble wrap, plastic bag, wool, cotton, foam, tin foil etc., Small containers big enough to put wrapped ice cubes in.
How to do it
Step 1 - Choose which materials you think will keep his lunch cold for the longest.
Step 2 - Wrap up each ice cube singly, in one material each, being careful to have the same number of layers for each material. Put each wrapped ice cube in a container. Remember, we are trying to make this a fair test, so what else do you need to keep the same?
Step 3 - Decide where to put your ice cubes and how often to check them. What signs will you look for to tell you which material works best?
Step 4 - Why do you think some ice cubes are melting more quickly than others? Do you think the cold from the ice cube is getting out, or the warmth from the air is getting into the ice cube?
Step 5 - Which material kept your ice cube frozen for the longest? When you have decided which material is best, design a lunchbox to keep Santa’s lunch cool this Christmas Eve.
What is thermal energy?
Materials melt because of heat, a form of energy (thermal energy). All objects are made up of particles which are in a constant state of motion. Cold objects have less thermal energy than warm objects and the particles which make them up will be moving much more slowly. If we put a cold object next to a warm object, they will exchange thermal energy until they achieve thermal equilibrium – and become the same.
We can stop or slow down this energy exchange by using a thermal insulator. Good thermal insulators have very strong bonds to hold their particles in place, stopping the particles from moving around easily and transferring energy to other particles.
Download the Insulator experiment activity sheet for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Light up Rudolph's nose
In this Christmas STEM activity for kids, students will test a simple series electrical circuit in an attempt to make Rudolph’s nose light up.
This experiment will encourage students to have fun with electronics and understand circuits.
What equipment will you need?
Rudolph template, Stiff piece of card the same size as the template, Block of wood, 2 crocodile leads, 1.5V or D size battery, A 2.5 bulb with holder, Sticky tape, Blu-tac
How to do it
Step 1
Please print off the Rudolph template and stick it onto a stiff piece of card.
Step 2
Make a hole (large enough to put the bulb through) where the nose would be, keeping the bulb holder at the back. Tape the bulb holder to the cardboard to hold it in place. You can paint the bulb red with a felt tip pen or add some red acetate. Sweet wrappers work well for this!
Step 3
Stick the block of wood to the bottom of the card so that the Rudolph template stands up.
Step 4
Attach the crocodile leads to the metal part on each side of the bulb holder. Stick the battery down on top of the piece of wood at the back with a piece of Blu-tac. You are now ready.
The science behind the experiment
Electricity will only flow when there is a power source within a complete circuit of conductive material with no breaks.
There is no need, at this stage, to explain what electricity is or how it works, but children can begin thinking about what electricity does.
Encourage the children to look around the room to find other things which work on electricity.
They could cut out pictures from magazines of things which work on electricity and then sort them into those which work on mains electricity and those which work on battery power.
Download the Light up Rudolph’s nose activity sheet for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Make electric dough
In this fun science activity for kids, students will make play dough that can insulate or conduct electricity.
Make colourful dough with salt and another with sugar to find out which one will work! Through this process they will learn about conductors and insulators. Students will also learn about ionic bonding.
This is a resource that encourages learners to have fun with science. An activity sheet is available to download for free.
We have also included a bonus wordsearch using terminology from the activity to promote sticky learning.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM
Folded book art
Turning a book into an artistic present!
In this fun activity designed for secondary school students, learners will be given the opportunity to make folded book art by manipulating paper products.
This free resource allows learners to use Christmas themes to develop their knowledge and skills in Design and Technology and Engineering.
A free activity sheet is available to download.
And please do share your classroom learning highlights with us @IETeducation
Snow blizzard in a jar
Learn about liquid and gas in this fun science experiment to make a snow blizzard
In this simple and festive activity for kids, students will create a snow blizzard in a jar!
This activity can function as a fun science experiment for the young engineer at home or as a full lesson in school to think about gas and reactions.
What equipment will you need?
A jar, A pot for mixing paint, Water, Baby oil (enough to fill ¾ of your jar), A small amount of glitter, Bicarbonate of soda or an effervescent tablet, A small tube of white paint, Blue food colouring, A stick for stirring
How to do it
Step 1 – First, fill the jar until about ¾ full of baby oil.
Step 2 – Mix water and a few tablespoons of white paint in the pot.
Step 3 – Return to the jar of baby oil and add the glitter and blue food colouring. You can add as much of these as you like – you are creating a magical winter scene!
Step 4 – Add the paint and water mixture into the jar, filling it to the top.
Step 5 – Lastly, add a teaspoon of bicarbonate of soda. Adding the bicarbonate of soda will start the blizzard!
The science behind the experiment
Oil is less dense than water, less heavy; This means the water sinks to the bottom of the jar, and the oil floats on top, and as they don’t mix, there’s a separation between the two.
When you add the bicarbonate of soda or an effervescent tablet, it reacts with the water to produce carbon dioxide gas bubbles. These stick to the water droplets. The water and gas combination is less dense than oil, making them rise to the top of the jar and create pressure in an upward direction.
At the top, the gas bubbles pop and escape into the air, leaving the dense water behind to sink back to the bottom again. This reaction creates our beautiful blizzard in a jar!
The engineering context
Understanding the way different materials work and the properties they all hold is vital in creating and developing solutions to our world’s problems. Engineers are interested in the world around them, which is a fun and critical spark to ignite from an early age.
Download the Snow blizzard in a jar activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Best Christmas wrapping paper experiment
Evaluate strength and durability of materials that Santa could use as wrapping paper
This fun and festive activity is suitable for 5-11-year-olds and will take approximately 1-2 hours to complete.
What equipment will you need?
At least six different types of wrapping paper. You can use more if you like (try and find ones which feel and look different, such as shiny metallic paper or tissue paper.),
Some tape for wrapping,
A large bin liner or a Christmas sack if you have one
Five bricks/ large stones of equal size. (It works best if they aren’t perfectly smooth or round.)
How to do it
Step 1 – Wrap up each brick or stone with a different piece of wrapping paper. These will be your ‘presents’.
Step 2 – Put them all in the sack together.
Step 3 – Ask an adult to act as Santa and shake the sack for 30 seconds as though carrying it around. You could sing Christmas songs while you are doing it.
Step 4 – Take each ‘present’ out and look at it carefully. Record any changes in the wrapping paper on a results sheet. These are your observations.
Step 5 – Put them all back into the sack and get your helper to shake them again.
Step 6 – Complete step 5 another three times (if your presents survive the shaking!). Record any changes each time.
Once you have determined which paper would be best, you could write a letter (or even a poem) to Santa to let him know how you tested the paper and which paper you think he should use. You can also look at packaging materials to see which protects items delivered by courier or the post the best.
For full instructions, download the worksheet and lesson plan for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
Sustainable lighting design
Design and make a sustainably powered light
This fun engineering project for KS3 will allow students to embrace sustainable engineering as they learn to combine scientific principles with artistic flair to craft their unique and planet-friendly light.
This activity could be used as a main lesson to teach about the benefits of using renewable energy and how it can help solve social problems. It could also be used as part of a wider scheme of learning focussing on sustainability and the 6Rs (rethink, refuse, reduce, reuse, recycle, repair).
Approximately 1 billion people worldwide, or 15% of the total population, have no access to mains electricity. How could a lamp be powered for children living in these conditions to enable them to read and study at night?
What you will need
Hi-bright light emitting diodes (LEDs).
Block connectors with two pin connections at either end, or solder and soldering equipment.
Insulation tape.
Red and black wires or crocodile clips.
A low power DC generator/motor (a motor working in reverse acts as a generator).
Pre-made or purchased turbine blades to attach to the generator.
The engineering context
Engineers bear a social and ethical obligation to consider the environmental impact when addressing design challenges. Understanding how to generate greener energy is imperative for aspiring electrical or electronic engineers, given that the renewable energy sector is one of the rapidly expanding industries in the field of engineering.
Suggested learning outcomes
By the end of this activity, students will be able to understand what is meant by, and the need for, renewable energy. They will be able to design and make a sustainably powered light, and they will understand how wind turbines work.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Halloween multiplication and division activity
Scaling activity to change the size of items
By applying mathematical knowledge and solving problems involving scale factors, we can manipulate scaled-up or scaled-down drawings.
In this fun STEM activity for KS2, students will learn how to change the scale of items, by doubling or halving the size and drawing them to a new scale. This is an engaging and practical exercise through which students will gain a deeper understanding of multiplication and division and how they are useful methods to change the scale of items.
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on the use of multiplication and division in the context of scaling an item to either double or half its size.
This versatile activity could be used as a main lesson activity to teach learners how to work out scale or to reinforce understanding of multiplication and division. It could also be used as one of several activities within a wider scheme of learning focusing on the use of maths to understand ratio and proportion. Additionally, it could support the development of drawing skills in art.
This is a Halloween-themed exercise that could be done as individuals or in pairs. Students will first use a grid to scale up a drawing of a pumpkin into a larger grid. Once this is completed, students will scale down a drawing of a ghost into a smaller grid. By utilising multiplication and division, students will gain valuable skills in the scaling of items.
This activity will take approximately 40-60 minutes to complete.
Tools/resources required
Halloween Multiplication and Division Activity… Worksheets
Pencils
Erasers
The engineering context
Structural engineers work with architects to help design most houses, hospitals, office blocks, bridges, oil rigs, ships and aircraft. They make scaled down drawings for each structure.
Suggested learning outcomes
By the end of this activity students will know how multiplication can be used to work out scale, they will be able to scale drawings back to their original size by either scaling up or scaling down and they will be able to solve simple problems in scaling contexts i.e., 2 times larger or 2 times smaller.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Egg drop challenge
A challenge to protect an egg from breaking after it is dropped from height.
In this fun STEM egg drop challenge students will use, make, and assemble a protective structure to save an egg from breaking.
This activity is aimed at secondary school students and could be used as a main lesson activity, to teach learners about the strength of structural forms. It could also be used as one of several activities within a wider scheme of learning focusing on gravity.
The Egg Drop Challenge is a popular and versatile Easter STEM challenge. It is an exciting and engaging way for children to develop their creative thinking and problem-solving skills.
This STEM challenge is one of a series of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Engineering. This resource focuses on the egg drop challenge. Sheets of paper are used to make a protective structure to prevent an egg being broken when dropped from height.
Once the egg protection frame has been built learners will test their structures by dropping the egg first from 0.5m, then 1m.
If your egg survives this fall, how high do you think an egg can be dropped from without breaking? How could you improve your design to make it more effective?
If using raw eggs, it is recommended that plastic covering is used on the floor and suitable hand washing facilities are available. One option is to use boiled eggs as these will reduce the mess but still crack on impact.
This activity will take approximately 60-90 minutes.
Tools/resources required
Projector/whiteboard
Raw eggs/Boiled eggs
Scissors
Glue sticks
Paper
Tissue paper
Sticky tape
String
Plastic bags
The engineering context
Understanding how structures are used to protect products is an important part of the new GCSE courses in Design and Technology and Engineering. Structures are used to protect many products, ranging from eggs to supplies dropped from aircraft during emergencies.
Suggested learning outcomes
By the end of this exercise students will know that gravity is a pulling force and they will be able to make a structure to protect an egg dropped from a height.
Download the free Egg Drop Challenge activity sheets, including a bonus crossword using the words used in the activity to enhance learning.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Make a homemade paper cone Christmas tree
Get kids thinking about 2-dimensional and 3-dimensional shapes, as well as faces, edges and vertices.
In this easy activity we are going to make paper cone Christmas trees which are fun to decorate and make a great centrepiece for any Christmas table.
Download the STEM activity sheet below for free, And if you’re up for an extra activity, try our wordsearch where you look for words used in the experiment to increase sticky learning.
Please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Write a poem to Santa
Creative writing activity to use poetry skills and complete the fun activity sheet.
The poem for primary school children focuses on Santa Claus and the magic of following your ambition to think about how you can use your skills and work in a job you love. When I am big, I want to be…
First, read the poem, then add your own final verse/s.
When you are completing the poems try and write in a similar style and use descriptive language.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Oh ho ho, and please do share your finished poems with us @IETeducation! #SantaLovesSTEM.
If you enjoy activities like this, why not try to write a poem about space or the ocean too.