Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Enhance your IB Chemistry DP exam preparation with these multiple-choice test papers covering Structures 1.1, 1.2, and 1.3 of the 2025 syllabus. Ideal for teachers and students, this resource includes:
A 30-mark Standard Level (SL) paper to be completed in 50 minutes.
A 40-mark Higher Level (HL) paper to be completed in 65 minutes.
Comprehensive mark schemes for both SL and HL papers.
A generic answer sheet for students to record their responses.
Perfect for in-class assessments or practice exams, these papers are designed to reflect the new IB Chemistry format for first assessment in 2025. Get your students exam-ready with these structured and time-effective resources!
Unlock the fundamentals of ionic compounds with this comprehensive teaching resource! This PowerPoint presentation is ideal for educators aiming to deliver engaging, hands-on lessons in chemistry.
Key Features:
Clear Learning Objectives - Students will explore:
The electrical conductivity of ionic compounds in different states.
The reasons behind high melting and boiling points.
Practical demonstrations to test conductivity in solid, aqueous, and molten states.
Interactive Starter Activities - Includes tasks like diagramming ionic bonding, writing equations, and identifying ionic compound properties, promoting critical thinking and problem-solving.
Experimental Focus - Step-by-step instructions for conducting safe, hands-on experiments using basic lab equipment to test conductivity and understand ionic behavior.
Detailed Explanations - Breakdowns of how ionic structures influence properties, with visual aids like animations and examples for easy comprehension.
Built-in Assessments - Thought-provoking questions challenge students to apply their knowledge and reinforce learning.
Perfect for middle and high school chemistry classes, this ready-to-use resource ensures an engaging and educational experience. Equip your students to master the properties of ionic compounds with confidence!
This PowerPoint resource guides students through the investigation of the specific heat capacity of an object, focusing on key scientific methods and calculations. Designed to meet curriculum requirements, it includes:
Starter Activity: Questions to review the definition and formulae for specific heat capacity, as well as real-life applications (e.g., why a full kettle takes longer to boil).
Step-by-Step Practical Instructions: Setting up equipment, including a mass balance, immersion heater, thermometer, and electrical circuit. Recording data such as voltage, current, and temperature changes over time. Performing the experiment with and without insulation to explore energy loss.
Key Equations: Includes Q=mcΔT and E=IVt for calculating energy transfer and specific heat capacity.
Analysis and Interpretation: Discussion on the effect of insulation on reducing energy loss. Exploring the precision and repeatability of results. Extension ideas, such as testing different materials or types of insulation.
Graphical Representation: Opportunities to plot temperature vs. time and analyze trends.
Reflection and Method Writing: Students are encouraged to write a clear, repeatable method and reflect on the reliability of their results.
This resource is perfect for supporting students in mastering practical skills, data analysis, and understanding energy transfer concepts in a controlled, engaging environment.
This PowerPoint presentation provides a comprehensive lesson on internal energy for science students. It begins with an engaging starter activity to review foundational concepts such as specific heat capacity, energy transfer mechanisms, and kinetic energy stores. Key learning objectives include:
Defining internal energy as the sum of kinetic and potential energy of particles in a substance.
Exploring how heating affects a substance’s internal energy, temperature, and state of matter.
Differentiating between changes in kinetic energy and potential energy during state changes like melting, boiling, and freezing.
Understanding particle arrangements and movements in solids, liquids, and gases.
The presentation also includes interactive tasks like gap-fill exercises, diagrams, and detailed explanations of heating curves. Practice questions reinforce understanding and encourage critical thinking about energy transfer and particle behavior during heating and phase transitions.
This PowerPoint resource is perfect for teaching the concepts of thermal energy transfer through convection and radiation. Designed with clarity and interactivity in mind, it includes:
Starter Activities: Thought-provoking questions to activate prior knowledge about heat conductors and insulators.
Learning Objectives: Clearly defined goals to help students understand convection currents, describe radiation, and differentiate between heat transfer methods.
Detailed Explanations: Step-by-step breakdowns of convection and radiation with real-life examples like heating in homes and energy transfer in space.
Interactive Tasks: Gap-fill activities, question prompts, and diagram-drawing exercises to consolidate learning.
Demonstrations: Visual examples and experiment-based questions to bring abstract concepts to life.
Ideal for secondary school science lessons, this resource supports active learning and engagement.
Learning Objectives:
State how energy and temperature are measured.
Describe the difference between heat and temperature.
Describe how energy is transferred from one object to another.
Explain what is meant by thermal equilibrium.
This resource bundle provides an in-depth exploration of energy transfer and thermal physics, designed to support both teaching and learning. It includes:
Energy and Temperature: Understanding the relationship between energy transfer and changes in temperature.
Conduction: Examining how thermal energy is transferred through solids.
Investigating Conductors and Insulators: Practical activities to identify and compare materials based on their thermal conductivity.
Convection and Radiation: Exploring heat transfer in fluids and through electromagnetic waves.
Heating and Insulating Buildings: Real-world applications of thermal energy transfer and energy efficiency strategies.
Specific Heat Capacity: Concepts and calculations to understand energy requirements for temperature changes in materials.
Required Practical on Specific Heat Capacity: Step-by-step guidance for conducting and analyzing this core experiment.
Internal Energy and Specific Latent Heat: A detailed look at energy changes during phase transitions and the implications for particle bonding.
This collection is ideal for students and educators aiming to deepen their understanding of thermal physics through engaging lessons, experiments, and problem-solving activities.
Learning Objective:
Investigate which materials are good insulators of heat.
Method:
Set up your boiling tubes: leave one unwrapped and wrap each of the others in a different material, using elastic bands or tape to hold the material in place. Try to make the different wrappings roughly the same thickness.
Prepare lids for the containers, made out of the same material as the wrapping, if possible, otherwise made from aluminium foil or cling film.
Make a hole in each lid which is just big enough for the thermometer to fit through.
Use the measuring cylinder to pour 20ml of hot water into each boiling tube.
Put the lids onto the containers, with a thermometer fitted through each lid so that it rests near the bottom of the water.
Start the stopwatch and measure the starting temperature of the water.
After 15 minutes, measure the temperature of the water in each beaker.
• Describe the effect of changing the mass or the force acting on an object on the acceleration of that object.
• Calculate the force required to cause a specified acceleration on a given mass.
• Perform calculations involving the rearrangement of the F = ma equation.
• Calculate the power of an electrical device.
• Practice converting units using kilo, mega and giga prefixes.
• Rank electrical appliances in order of power.
• Rearrange the electrical power equation to calculate the energy transferred.
• Calculate efficiency using input and output power.
Describe the difference between mass and weight.
Describe the forces acting on an object falling through a fluid.
Explain what terminal velocity is and when it is reached.
Calculate the stopping distance from the thinking distance and the braking distance
• Categorise factors which affect thinking distance, braking distance, and both.
• Calculate the braking distance of a car.
• Define what the centre of mass is and identify where it would be in a range of simple shapes.
• State that a suspended object will come to rest so that the centre of mass lies below the point of suspension.
• Describe an experimental technique to determine the centre of mass of an object with an irregular shape.
• Compare the stability of objects to the position of their centre of mass.
Define elastic and non-elastic deformation in materials.
Calculate the extension (or compression) of a material using its length and original length.
State Hooke’s law and use it to calculate the force required to cause a given extension in a spring using the spring constant.
Describe how elastic potential energy is stored when a material is stretched or compressed by a force.
Describe force-extension graphs of elastic materials and identify the limit of proportionality.
Compare the behaviour of different materials before and after the limit of proportionality.
Describe the motion of an object by interpreting distance–time graphs.
Describe how the gradient of a distance–time graph represents the speed.
Calculate the speed of an object by calculating the gradient from a distance–time graph.
Describe the motion of an object by interpreting velocity–time graphs.
Describe how the gradient of a velocity–time graph represents the acceleration.
Calculate the acceleration of an object by calculating the gradient from a velocity–time graph.