I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
Completely resourced lesson on distance-time graphs with key content from AQA and Edexcel Physics.
Lesson begins with a review of the use of graphs to present data and relationships, highlighting key graph vocabulary and trends.
Speed, distance and time is briefly recapped with the equation and some simple questions.
An exercise in plotting distance-time graphs from a short description allows pupils to understand what different trends mean on a d-t graph by plotting them, themselves.
Following this it is explained in detail how a d-t graph gradient calculates speed by relating this clearly to the equation for speed.
A class experiment is detailed if you wish to allow your pupils to carry this out but if not another activity following summarises the same concepts through a pre-prepared worksheet.
A homework task is included that will require some modelling from the teacher.
A complete and detailed lesson on Radioactivity, focusing on the properties of alpha, beta and gamma radiation & a second lesson on uses of nuclear radiation (created with AQA and Edexcel specification content).
PROPERTIES OF NUCLEAR RADIATION
1) Review the characteristics of the 3 types of nuclear radiation.
2) Identify the penetrating power and range of type of radiation.
3) Explain what is meant by ionising radiation and relate to the three types and applications of this.
4) Compare and contrast the effect of magnetic and electric fields of nuclear radiation.
Pupils are prompted to post questions they have on nuclear radiation so far and in general which can be discussed by the class to serve as some recap on the previous lesson, deal with misconceptions and highlight progress when these may be answered during the lesson (and previous lessons).
Pupils recap the content of the previous lesson on the characteristics of the 3 types of radiation as this is important to the current lesson and exercises their knowledge on the subject.
Penetrating power and range of the types of radiation is covered in detail using animations.
Ionisation is reviewed by challenging pupils through questioning relating to previous content. This is then related to radiation and the types ability to ionise atoms. This lead to descriptions of photographic film and a detailed description of how the geiger-muller counter work with a bespoke animation to assist this.
Deflection of radiation is covered through questioning using clear imagery and animations to support pupils. This leads to literacy based task for pupils to compare and contrast different types of radiation and their path through an electric field.
New GCSE AQA Physics lesson on 'Electrical Power and potential difference' written in line with new AQA Physics specification.
Starter looks at the power of different devices of very different orders of magnitude. Following this a quick activity looks at powers and conversion using Watts as the unit to convert - reviews nW, µW, mW, W, kW, MW, GW.
The power and energy transferred equation is reviewed briefly through review questions.
The equation for power using voltage and current is introduced and how to re-arrange it. Fuse ratings are discussed with appropriate choice of fuse rating highlighted.
Energy transfer by heating in conductors/resistors is reviewed and then related to the Power equation using resistance and current. How to re-arrange this is shown in detail.
The lesson concludes with a series of review questions and exam style questions.
Lesson Objectives:
1) State a definition for power.
2) Calculate the power of an appliance by the energy transferred.
3) Relate potential difference and current to electrical power.
4) Identify appropriate fuse ratings for appliances.
5) Identify the uses of resistance in conductors and calculate power using resistance.
New GCSE AQA Physics lesson on 'EM spectrum details' written in line with new AQA Physics specification.
Lesson Objectives:
1) Recall the different parts of the electromagnetic spectrum in order of wavelength, frequency and energy.
2) Explain in detail with different uses up to 4 EM waves.
3)Explain in detail with different uses of all 4 EM waves.
4) Evaluate and discuss the potential risk of using mobile phones.
New AQA GCSE lesson on Scalars and Vectors (+ Forces) written in line with new GCSE AQA specification. All questions provided with answers within power point.
Starter asks how far away a school is from a home - this prompts responses from pupils that either follow the road or straight across the field. This introduces the idea of distance and displacement which is explained in detail. This is also used to explain magnitude, scalars and vectors. A series of questions review pupils understanding of distance and displacement.
A quick class activity reviews a number of different variables to classify each as scalar or vector.
Speed and Velocity are identified as a scalar and vector by reviewing the equations and then also related to acceleration. This leads to force the representation of force vectors and scale diagrams.
A quick review of forces and different types of forces lead to force interactions and their effects. A set of review questions provides use of force vectors.
Lesson Objectives:
- Explain how displacement and distance are different.
- Identify and explain scalar and vector quantities.
- Identify different types of forces and how these can be represented.
- Explain what the effect of simple force interactions will have on objects.
Complete lesson on u-values and payback time with key content from AQA Physics.
Starter includes 10 questions to serve as a summary of previous heat transfer content.
Main includes simple insulation experiment leading to explanation of u-values explaining the units clearly.
Pupils often get confused with U-values and what they mean, direct link to experiment can help by discussing results from the experiment and which material would have a higher or lower u-value.
U-values related to key home insulation methods, this lead onto cost effectiveness and payback time.
Plenary uses exam style questions including a 6 mark question.
More lessons to follow in same format for P1.
https://www.tes.com/member/Nteach
GCSE lesson on specific heat capacity including key content from AQA GCSE Physics.
Includes an example which could be used as an teacher demo if wished for starter.
Lesson focuses on words to inform what specific heat capacity means to help understand the equation and units. Questions included for practice of using equation for exam to secure marks in exam.
Also an exam question is attached at the end.
More P1 lessons in same format.
https://www.tes.com/member/Nteach
Complete lesson on heat transfer by design with key content from AQA Physics.
Starter includes a simple teacher demo and competition if you wish to make it that way.
Main includes simple challenge for pupils using simple equipment and key information and tasks on heat transfer applications.
Plenary uses 6 mark exam question.
Home structure included for pupils that would prefer to not draw their own for home insulation task.
More lessons to follow in same format for P1.
https://www.tes.com/member/Nteach
Complete lesson on methods of generating electricity with key content from AQA Physics.
Starter uses a series of riddles for pupils to identify different energy resources.
Activity sheet included to identify key part of a fossil fuelled power station leading to discussion on processes and advantages & disadvantages.
Main includes a timed web-quest for pupils to research the different methods of generating electricity (useful links are included in the Power Point comment box which can be used for lower ability pupils to assist in finding appropriate information).
Following webquest the slides provide key notes on each method with advantages & disadvantages.
Lesson concludes with literacy task to compare and contrast the different methods of generating electricity (can be set as homework).
More lessons to in same format for P1.
https://www.tes.com/member/Nteach
Complete GCSE Physics lessons on I-V Characteristics using key content from AQA Physics P2.
Starter provides a discussion of graph trends and what graphs tell us, this leads on to wider details of how to interpret graph results and key vocabulary.
Sometime can be spent getting pupils to plan an experiment to investigate I-V characteristics of different electrical components but you can choose to move straight to the guided investigation.
On collection of data for fixed resistors, diodes and filaments bulbs the class can plot their data on graphs.
Key data trends are summarised with explanations of trends for each component.
Exam style questions are provided in the relation the new specification.
Lesson finished with questioning on LDR's and thermistors with an activity which can be in class or for homework.
Lesson Objectives:
1) Identify relationships shown by graphs. (D)
2) Design & carry out an experiment to investigate the relationship between I & V for different electrical components. (C)
3) Explain how current and voltage vary for a filament bulb, diode and fixed resistor. (B)
4) Explain in detail what causes the current and voltage to change for key electrical components. (A)
Note: This lesson is formatted is similar content to previously listed 'I_V charasteristics' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
Resources for new GCSE AQA Physics 2016 specification.
Bundled lessons cover the Energy and energy resources content of the GCSE.
This includes:
- Changes in energy stores.
- Conservation of energy.
- Energy and work.
- Gravitational potential, kinetic and elastic potential energy.
- Energy and efficiency.
- Electrical appliances, Energy and Power.
- Energy transfer by conduction.
- Infrared radiation.
- Infrared radiation, surfaces and the Earth.
- Heating and insulation.
- Energy demands, Fossil fuels, Nuclear Power and Biofuels.
- Renewable Energy Resources.
For clear detail on aspects of each lesson please review each lesson bundled into the packaged to ensure it meets your requirements. I hope this gives you and your pupils a great start to the new Physics GCSE.
I do update each lesson in the bundle with new and varied content as I often revisit lessons to further improve them.
New GCSE AQA Physics lesson on 'Refraction of Light ' written in line with new AQA Physics specification.
Lesson Objectives:
1) Detail steps to investigate how light travels through materials.
2) Investigate how light travels through materials.
3) Describe what happens to waves when they travel through materials of different densities.
4)Draw ray diagrams to show refraction of light through a glass blocks.
5) Use knowledge of refraction to explain phenomena of light travelling between boundaries.
New GCSE AQA Physics lesson on 'Internal Energy' written in line with new AQA Physics specification.
Lesson Outline:
Starter discussed whether a glass of water has energy of not to see what conclusions pupils can draw on this from previous lessons. This leads to a view of a substance on a microscopic scale to highlight that the particles are moving, therefore pupils should be able to deduce must have energy in order to move. Internal energy is then shown to be this energy in substance due to kinetic energy and potential energy. After revisiting the starter how to increase internal energy is discussed The different states of matter are review again but now in relation to internal energy with helpful graphics to support these points. How much energy in a substance is related to specific heat capacity which is typically covered earlier in the course so this provides a great opportunity to review of this topic. Lesson concludes with review questions.
Lesson Objectives:
- Explain what is meant by internal energy.
- Identify and explain how you can increase internal energy.
- Relate internal energy to properties of solids, liquids and gases.
- Explain how particles in a gas exert a pressure.
New GCSE AQA Physics lesson on ‘Latent Heat’ written in line with new AQA Physics specification.
Lesson Outline:
Starter review the change of state graph to look at why the temperature does not increase at the transition point of state of matter whilst it substance is still heated. To answer this internal energy is first recapped. This highlights the importance of the potential energy of the substance/ position of particles in a substance for different states and also overall internal energy. This leads to the conclusion that the energy is being used to change these particles position and overcome forces of attraction within a substance in order to change state - therefore no temperature increase.
Latent heat of fusion and latent heat of vaporisation are both discussed in detail with the equation and in relation to the graph. Examples of the equation in use show how to carry out calculations to pupils. Lesson concludes with review questions.
Lesson Objectives:
- Explain what happens to a substance as it is provided more energy without a temperature change.
- State and explain what is meant by specific latent heat.
- Compare and contrast latent heat of fusion and latent heat of vaporisation
- Successfully apply latent heat equations to solve problems.
New GCSE AQA Physics lesson on Forces and Elasticity written in line with new AQA Physics specification.
Lesson starts by discussing what elasticity is in relation to familiar, everyday objects which then challenge pupil thinking with ‘slo-mo’ videos of these objects being impacted.
Elasticity is then further explored with compression and tension in springs and also related to other objects.
To assist pupils in their understanding of the force extension graphs for materials proportionality is reviewed mathematically.
A class experiment is detailed using simple Physics equipment to test everyday materials for to produce a force-extension graph. Conclusions can then be drawn from the data produced in this experiment.
Hooke’s law is detailed and related to a simply spring extension experiment and used to highlight spring constants.
Plenary poses a summary question for pupils to answer with detailed responses showing their understanding of elasticity.
Learning Objectives:
- Identify objects in compression or tension.
- Explain what is meant by a proportional relationship.
- Describe an experiment to extension of an object due to force applied.
- Interpret and draw conclusions from a force-extension graph.
New GCSE AQA Physics lesson on ’ Pressure and Surfaces’ written in line with new AQA Physics specification. All questions provided with answers within power point.
Starter looks at a balloon being pressed down onto a bed of nails - details of how to set this up simply with thumbtacks (obvious as it is) can be found in the notes box.
Following this a problem of dog trapped on thin ice is presented for pupils to come up with potential rescue attempts to avoid breaking the ice. The concept of pressure is consolidated with the example of thumb tack being pressed into a wall - the equation for pressure is then detailed.
To make use of the pressure equation an elephant and person in stiletto heels are compared mathematically to find which exerts the greatest pressure. Pupils are then guided to calculate the amount of pressure they exert onto the floor whilst standing.
The lesson is concluded with a set of review question.
Lesson Objectives:
- State what pressure is and be able to calculate it.
- Identify the units for pressure.
- Explain the relationship between pressure, force and area.
- Apply knowledge of pressure to different problems.
5 Lessons on GCSE AQA Physics 'Forces and Motion. Lessons include:
- Forces and acceleration.
- Terminal velocity.
- Forces and Braking.
- Momentum.
- Impact Forces.
- Forces and Elasticity.
Please see individual item listing for details on each individual lesson.
ALL lessons have answer keys in the PowerPoint
New GCSE AQA Physics lesson on ’ Sound’ written in line with new AQA Physics specification. All questions provided with answers within power point.
Lesson Objectives:
Explain what sound is in terms of a wave.
Explain what an echo is and how it occurs.
Detail what effect amplitude has on sound.
Detail what effect pitch has on sound.
Explain how the human ear detects sound and the limits of the human ear.
New GCSE AQA Physics lesson on the AC DC generators written in line with new AQA Physics specification. All questions provided with answers within power point.
Explain how the generator effect is used in an alternator to generate ac
Explain how a ‘dynamo’ generates dc current
Interpret graphs of potential difference generated in the coil against time.
Explain how a moving-coil microphone works.