Paperfriendlyresourcesuk
New Resources Coming soon!
PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.
Paperfriendlyresourcesuk
New Resources Coming soon!
PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.
Uses of monoclonal antibodies lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability SEPARATE (trilogy) class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos,questions with answers on slides and homework, with mark scheme.
NB: This resource is for separate science only
AQA spec link: 4.3.2.2
Relevant chapter: B6 Preventing and treating diseases. AQA Biology third edition textbook-Page 107-109
Specification requires students to know the following;
Students should be able to describe some of the ways in which monoclonal antibodies can be used.
•To treat some diseases: for cancer the monoclonal antibody can be bound to a radioactive substance, a toxic drug or a chemical which stops cells growing and dividing. It delivers the substance to the cancer cells without harming other cells in the body.
Students are not expected to recall any specific tests or treatments but given appropriate information they should be able to explain how they work.
Monoclonal antibodies create more side effects than expected. They are not yet as widely used as everyone hoped when they were first developed.
AQA A-Level New specification-Structure of the cell surface membrane-Transport 4.1 (3.2.3)
Enough content for a double lesson.
Includes: questions, embedded videos, slide timers, slide animations, interactive answers on slides, and a plenary.
Also includes a 3D model making activity (to be printed on card paper)
ALevel Biology Textbook: Section 2 Cells, Chapter 4.1
The best of both worlds lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class, although content can be adjusted to suit any ability. Includes: slide animations, embedded timers, practice questions with answers on slides, quiz and 6 mark past paper question with ms. This topic is synoptic and relates to other sections where more detail is given.
AQA spec link: 6.1.3
Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 200-201.
Specification requires students to know the following;
Some organisms reproduce by both methods depending on the circumstances.
• Malarial parasites reproduce asexually in the human host, but sexually in the mosquito.
• Many fungi reproduce asexually by spores but also reproduce sexually to give variation.
• Many plants produce seeds sexually, but also reproduce asexually by runners such as strawberry plants, or bulb division such as daffodils.
Knowledge of reproduction in organisms is restricted to those mentioned, but students are expected to be able to explain the advantages and disadvantages for any organism if given
appropriate information.
DNA and the genome lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz.
AQA spec link: 6.1.4
Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 202-203.
Specification requires students to know the following;
Students should be able to describe the structure of DNA and define genome. The genetic material in the nucleus of a cell is composed of a chemical called DNA. DNA is a polymer made up of two strands forming a double helix. The DNA is contained in structures called chromosomes.
A gene is a small section of DNA on a chromosome. Each gene codes for a particular sequence of amino acids, to make a specific protein. The genome of an organism is the entire genetic material of that organism. The whole human genome has now been studied and this will have great importance for medicine in the future.
Students should be able to discuss the importance of understanding the human genome.
This is limited to the:
• search for genes linked to different types of disease
• understanding and treatment of inherited disorders
• use in tracing human migration patterns from the past.
Cancer lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, video, worksheet and mini review.
AQA spec link: 4.2.2.7
Relevant chapter: B7 Non-communicable diseases. AQA Biology combined textbook-Page 102-103
Specification requires students to know the following;
Students should be able to describe cancer as the result of changes in cells that lead to uncontrolled growth and division. Benign tumours are growths of abnormal cells which are contained in one area, usually within a membrane. They do not invade other parts of the body. Malignant tumour cells are cancers. They invade neighbouring tissues and spread to different parts of the body in the blood where they form secondary tumours.
Scientists have identified lifestyle risk factors for various types of cancer. There are also genetic risk factors for some cancers.
Fossils and extinction lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes.
AQA spec link: 4.6.3.5
Relevant chapter: B14 Genetics and evolution. AQA Biology trilogy edition textbook-Page 192-193
Students are required to know the following;
Fossils are the ‘remains’ of organisms from millions of years ago, which
are found in rocks. Fossils may be formed:
• from parts of organisms that have not decayed because one or more
of the conditions needed for decay are absent
• when parts of the organism are replaced by minerals as they decay
•as preserved traces of organisms, such as footprints, burrows and
rootlet traces.
Many early forms of life were soft-bodied, which means that they
have left few traces behind. What traces there were have been mainly
destroyed by geological activity. This is why scientists cannot be certain about how life began on Earth.
WS 1.3 Appreciate why the fossil record is incomplete.
Eukaryotic cell structure lesson created in accordance to the NEW AQA Biology 7402 Specification (2017) . 3.2 Cells
Designed for highly able A-level class.
Includes: questions, embedded videos, slide timers, slide animations, interactive answers on slides, and a plenary.
AQA Specification reference: 3.2.1.1
ALevel Biology Textbook: Section 2 Cells, Chapter 3.5
New systems of classification lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes.
AQA spec link: 4.6.4
Relevant chapter: B14 Genetics and evolution. AQA combined trilogy edition textbook-Page 200-201
Students are required to know the following;
As evidence of internal structures became more developed due to improvements in microscopes, and the understanding of biochemical processes progressed, new models of classification were proposed.
Due to evidence available from chemical analysis there is now a ‘threedomain system’ developed by Carl Woese. In this system organisms are divided into:
•archaea (primitive bacteria usually living in extreme environments)
•bacteria (true bacteria)
•eukaryota (which includes protists, fungi, plants and animals).
WS 1.1 Understand how scientific methods and theories develop over time.
Evolutionary trees are a method used by scientists to show how they believe organisms are related. They use current classification data for living organisms and fossil data for extinct organisms.
Cell division in sexual reproduction, otherwise known as meiosis lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class, although content can be adjusted to suit any ability. Includes: slide animations, embedded timers, practice questions with answers on slides, quiz and 6 mark past paper question with ms. *Knowledge of the stages of meiosis is not required.*
AQA spec link: 6.1.1
Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 198-199.
Specification requires students to know the following; 6.1.2
Students should be able to explain how meiosis halves the number of chromosomes in gametes and fertilisation restores the full number of chromosomes.
Cells in reproductive organs divide by meiosis to form gametes.
When a cell divides to form gametes:
• copies of the genetic information are made
• the cell divides twice to form four gametes, each with a single set of chromosomes
• all gametes are genetically different from each other.
Gametes join at fertilisation to restore the normal number of chromosomes. The new cell divides by mitosis. The number of cells increases. As the embryo develops cells differentiate.
Discovering drugs lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos and practice questions with answers on slides. EDITED-PPT has been edited noticed a few spelling mistakes! Included a crossword also.
AQA spec link: 3.1.9
Relevant chapter: B6 Preventing and treating diseases. AQA Biology third edition textbook-Page 102-103
Specification requires students to know the following;
Students should be able to describe the process of discovery and development of potential new medicines, including preclinical and clinical testing. Traditionally drugs were extracted from plants and microorganisms. • The heart drug digitalis originates from foxgloves. • The painkiller aspirin originates from willow. • Penicillin was discovered by Alexander Fleming from the Penicillium mould. Most new drugs are synthesised by chemists in the pharmaceutical industry. However, the starting point may still be a chemical extracted from a plant.
This bundle includes the B6 unit-Preventing and treating disease. This is a combined science unit. All lessons have been done in accordance to the specification requirements. Videos have been embedded for ease of use (no internet connection required except for a BBC-drug trials video-URL provided), and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 23% by purchasing this bundle :)
Lesson 1-Vaccination
Lesson 2-Antibiotics and painkillers (L1) (taught this over 2 lessons, both included in this resource pack).
Lesson 3-Antibiotics and painkillers (L2)
Lesson 4-Discovering drugs
Lesson 5-Developing drugs
Eukaryotic and prokaryotic cells lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos and practice questions with answers on slides.
AQA spec link: 1.1.1
Relevant chapter: B1 Cell structure and transport. AQA Biology third edition textbook-Page 8-9
Specification requires students to know the following;
Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. Bacterial cells (prokaryotic cells) are much smaller in comparison. They have cytoplasm and a cell membrane surrounded by a cell wall. The genetic material is not enclosed in a nucleus. It is a single DNA loop and there may be one or more small rings of DNA called plasmids. Students should be able to demonstrate an understanding of the scale and size of cells and be able to make order of magnitude calculations, including the use of standard form.
MS 1b, 2a, 2h WS 4.4 Use prefixes centi, milli, micro and nano.
Specialisation in plant cells lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos and practice questions with answers on slides, card sort activity and display slides.
AQA spec link: 1.1.3
Relevant chapter: B1 Cell structure and transport. AQA Biology third edition textbook-Page 12-13
Specification requires students to know the following;
Students should be able to, when provided with appropriate information, explain how the structure of different types of cell relate to their function in a tissue, an organ or organ system, or the whole organism. Cells may be specialised to carry out a particular function:
root hair cells, xylem and phloem cells in plants.
Covalent bonding lesson created in accordance to the Pearsons BTEC national specification for applied science. This topic is covered in unit 1 chemistry-Periodicity and properties of elements. This new specification requires students to sit an externally assessed examination in January. Includes slide animations and practice questions with answers on slides.
Relevant chapter: Principles and applications of science. Pearson Applied science (Student 1) textbook-Page 9-10
The specification requires students to know the following:
Understand covalent bonding
strong electrostatic attraction between two nuclei and the shared pair(s) of electrons between them
dot and cross diagrams to show electrons in simple covalent molecules, including those with multiple bonds and dative covalent (coordinate) bonds
the relationship between bond lengths and bond strengths in covalent bonds
tetrahedral basis of organic chemistry
This lesson has been improved, it contains two lessons worth of content and now includes an optional practical activity
Photosynthesis lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s, optional practical and mini review. NB: If you are unable to play embedded videos please view slide notes for link.
AQA spec link: 4.4.1.1
Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 124-125
Students are required to know the following;
Photosynthesis is represented by the equation:
carbon dioxide + water (light) glucose + oxygen
Students should recognise the chemical symbols: CO2, H2O, O2 and C6H12O6.
Students should be able to describe photosynthesis as an endothermic reaction in which energy is transferred from the environment to the chloroplasts by light.
Stem cells (introduction) lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability separates class, although content can be adjusted to suit any ability. Includes: slide animations, embedded video, practice questions with answers on slides.
AQA spec link: 4.1.2.3
Relevant chapter: B2 Cell division. AQA Biology third edition textbook-Page 30-31
Specification requires students to know the following;
A stem cell is an undifferentiated cell of an organism which is capable of giving rise to many more cells of the same type, and from which certain other cells can arise from differentiation.
Students should be able to describe the function of stem cells in embryos, in adult animals and in the meristems in plants. Stem cells from human embryos can be cloned and made to differentiate into most different types of human cells. Stem cells from adult bone marrow can form many types of cells
including blood cells.
Meristem tissue in plants can differentiate into any type of plant cell,
throughout the life of the plant.
Knowledge and understanding of stem cell techniques are not required.
Treatment with stem cells may be able to help conditions such as diabetes and paralysis
Antibiotic resistant bacteria lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes.
AQA spec link: 4.6.3.7
Relevant chapter: B14 Genetics and evolution. AQA combined trilogy edition textbook-Page 196-197
Students are required to know the following;
Bacteria can evolve rapidly because they reproduce at a fast rate.
Mutations of bacterial pathogens produce new strains. Some strains might be resistant to antibiotics, and so are not killed. They survive and reproduce, so the population of the resistant strain rises. The resistant strain will then spread because people are not immune to it and there is
no effective treatment.
MRSA is resistant to antibiotics.
To reduce the rate of development of antibiotic resistant strains:
• doctors should not prescribe antibiotics inappropriately, such as
treating non-serious or viral infections
• patients should complete their course of antibiotics so all bacteria are
killed and none survive to mutate and form resistant strains
•the agricultural use of antibiotics should be restricted.
The development of new antibiotics is costly and slow. It is unlikely to keep up with the emergence of new resistant strains.