Hero image

SWiftScience's Shop

Average Rating4.24
(based on 768 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

835k+Views

475k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE (2016) Chemistry  - Reaction Profiles & Bond Energy Calculations
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reaction Profiles & Bond Energy Calculations

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first task is a recap on the differences between endothermic and exothermic reactions, students will need to complete a fill-in-the blank task which can then be self-assessed using the answers provided. Next, students are introduced to reaction profiles with a diagram to demonstrate what is happening during an exothermic chemical reaction. Students will then be asked to use mini-whiteboards to draw a reaction profile for an endothermic reaction, they can check their ideas using the answer provided in the PowerPoint. The next slide shows the reaction profiles for both an endothermic and exothermic reaction, as well as an explanation of the energy changes which take place during these types of reaction. Pupils can take notes from this slide, including sketching a diagram of the two reaction profiles. The next task is for pupils to complete is a progress check to assess their understanding of what they have learned so far, once complete pupils can self-assess or peer-assess their work using the answers provided. Next, pupils will watch a video on activation energy, they will need to answer a set of questions using the information provided in the video. Pupils can self-assess their work using the mark scheme provided in the PowerPoint. The next part of the lesson focuses on bond breaking/making and bond energies. Firstly, students are shown (using a diagram to demonstrate) what happens, in terms of energy changes, when bonds are broken or when bonds form during a chemical reaction. Students can then summarise what they have learnt so far by completing a fill-in-the-blank task, this task can be self-assessed using the mark scheme provided. Lastly, students are introduced to bond energies and are shown how to calculate the energy change for a chemical reaction using a worked example. Students will then need to complete a worksheet on bond energy calculations. The mark scheme for the worksheet is included in the PowerPoint for pupils to self-assess or peer-assess their work. The plenary task requires pupils to identify a WWW and EBI from the lesson, listing what went well/what they have fully understood and what they could do better next time. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Neutralisation & Strong/Weak Acids
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Neutralisation & Strong/Weak Acids

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students will firstly be shown a set of images, students will have to decide which are examples of an alkali/base and which are examples of acids. Next, students will watch a video on acids/alkalis and will need to answer a set of questions, after which they can self-assess their work using the mark scheme provided. The next part of the lesson focuses on pH, students are firstly reminded of the importance of the pH scale and will then need to complete an investigation to identify the pH of different substances. Students can use the practical sheet provided to complete this task, including the results table to record their results. The next part of the lesson looks at the difference between concentrated and dilute solutions, in terms of particles and in terms of risk/hazards when handling concentrated acids. Students will then need to summarise what they have learned with a fill-in-the-blank task, this work can be self-assessed using the mark scheme provided. The final part of the lesson pupils will focus on the difference between strong and weak acids in terms of ionisation. Students will also look at how pH values are related to the concentration of H+ ions, students will need to copy and complete a table to show the concentration of H+ ions per mol dm3 for each pH value, this work can then be self-assessed using the mark scheme provided. The plenary task is a ‘Pick a plenary’ task - pupils will need to either write a twitter message to summarise what they have learnt or write 5 quiz questions on the topics studied in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons

10 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Structure & Bonding’ unit for the NEW AQA Chemistry Specification. Lessons include: States of matter Forming ions Ionic bonding Giant ionic lattices Covalent bonding Simple and giant covalent structures Metallic bonding & giant metallic structures Nanoparticles The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Firstly, pupils will need to complete a ‘True or False’ activity on carbohydrates, they will then be shown how polysaccharides are made from monosaccharides via a condensation reaction, as an example of a natural polymer. Pupils will also be provided with information on the structure of starch and glycogen ad how this relates to the function of these two polymers. Another example of a natural polymer are polypeptides/proteins which are made up of the monomers - amino acids. Again, pupils will be shown how a condensation reaction occurs to link together many amino acids molecules in a long polypeptide chain. Pupils will now complete a ‘Quick Check’ task to test their knowledge of what they learned so far this lesson, the answers to the questions will be provided in the PowerPoint for students to assess their own work. The next part of the lesson will focus on DNA as a natural polymer. Firstly, pupils will need to order the structures given in order of size - DNA, gene, chromosome, nucleus, cell. Next, pupils will watch a video on the structure and function of DNA and will need to answer a set of questions. This work can then be self-assessed using the answers provided in the PowerPoint. A diagram is then shown highlighting some of the key structural features of a double-helix DNA molecule, which pupils need to know and remember. The final task is a ‘Quick Check’ activity on the structure & function of DNA, students will need to answer the questions in their books and then peer or self-assess their work using the mark scheme provided. The plenary task is for pupils to write three quiz questions for pupils to test their peers knowledge of the topic learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - The Earth's Atmosphere
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - The Earth's Atmosphere

4 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Earth’s Atmosphere’ unit for the NEW AQA Chemistry Specification. Lessons include: The History & Evolution of Our Atmosphere The Greenhouse Effect Global Climate Change Atmospheric Pollutants The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
NEW AQA GCSE (2016) Chemistry - Reduce, reuse, recycle
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reduce, reuse, recycle

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson focuses on the problems of metal extraction, particularly to the environment. Students will firstly brainstorm their ideas of how metal extraction can cause problems, then some examples are revealed using the PowerPoint presentation and the need for recycling is also explained. Students will then need to complete a progress check, a set of questions to assess their knowledge of what they have learned this lesson. The answers to which are included in the PowerPoint presentations so students can self-assess or peer-assess work. Pupils will now focus on the extraction and recycling of three metals: aluminium, copper and iron. They will firstly be given some information sheets on these three metals and using these they will need to answer a 6-mark exam question which requires pupils to give a use for each metal and outline reasons why they should be recycled by listing both economic and environmental reasons. This task can then be peer or self-assessed using the comprehensive mark scheme provided. Pupils will now watch a video which outlines limits to recycling, pupils will need to answer a set of questions whilst watching the video. This work can then be self-assessed using the mark scheme provided. The last task is a word search, pupils need to find a list of key words in the word search and for each word they find they need to write a sentence which links that word to the extraction of metal from it’s ore. The plenary activity is for pupil to spend five minutes thinking about what they have learned in the lesson - what they have understood and what they would like to spend more time on. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk@gmail.com and any feedback would be appreciated :)
KS3 Science Project
SWiftScienceSWiftScience

KS3 Science Project

(2)
PowerPoint and task cards aimed at a KS3 class (initially planned for Year 9) to complete a poster, written assignment and a model for a specific area of Science to present in a Science Fair. For each of the task cards a detailed list of requirements for each part of the project is included, with ideas for extension work to earn more points and homework ideas as well. I used this resource straight after my students had completed their end of year test as a fun and engaging activity, when complete pupils presented their projects to the class and I awarded certificates for best written assignment, best poster, best model and best overall project.
NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle
SWiftScienceSWiftScience

NEW GCSE AQA Chemistry - 'Rates of Reaction' bundle

7 Resources
This bundle of resources contains 6 lessons which meet all learning outcomes within the 'Rates of Reaction’ unit for the NEW AQA Chemistry Specification. Lessons include: Rates of reaction Reversible reactions Rate of reaction: The effect of catalysts Rate of reaction: The effect of concentration & pressure Dynamic equilibrium & altering conditions Collision Theory: The effect of temperature & surface area. The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016)  Chemistry - Nanoparticles
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Nanoparticles

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a description of the new field of nanoscience and the types of industries where this may be important. Pupils are then given a set of questions which they must complete using a video, once the students have answered the questions they can assess their work using the mark scheme provided. Pupils will now focus on the importance of surface are to volume ratio when considering nanoparticles, students will calculate the surface area to volume ratio of a cube that is 100cm x 100cm, 10cm x 10cm and 1cm x 1cm. By doing this they can see that the smaller the particle the higher the surface area to volume ratio, this is an important property in nanoparticles - particularly for their use as catalysts. Students are then asked to prove that the same applies for a cube that is 10m x 10m and 0.1cm x 0.1cm. All work from these tasks can be self or peer assessed using the answers provided in the PowerPoint presentation. The next part of the lesson is a task for pupils to consider the application of nanotechnology, pupils will each be given a card of information describing one application of nanoparticles. They will need to walk around the room and discuss the applications with each other to complete a table in their books. The last task is for pupils to consider the potential risks involved with the uses of nanoparticles in everyday products, students should think > pair > share their ideas about how the industries using nanoparticles might be posing risks to people and the environment. Once the class has discussed these potential risks you can outline some examples using the PowerPoint presentation. The plenary is for pupils to pick a task, either write a twitter message or summarise what they learnt in the lesson in three sentences. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Organic Chemistry' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Organic Chemistry' lessons

10 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Organic Chemistry’ unit for the NEW AQA Chemistry Specification. Lessons include: Alcohols, carboxylic acids and esters. Complete & incomplete combustion Cracking hydrocarbons Fractional distillation Hydrocarbons Natural polymers & DNA Polymerisation Reactions of alkenes The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Chemistry - 'Atomic Structure & the Periodic Table' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Atomic Structure & the Periodic Table' lessons

13 Resources
This bundle of resources contains 10 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Atomic Structure and the Periodic Table’ unit for the NEW AQA Chemistry Specification. Lessons include: 1. Atoms, elements, compounds & mixtures 2. Chemical reactions & equations 3. Separating mixtures 4. The structure of the atom 5. The development of the atomic model 6. Electronic configuration 7. Mendeleev and the periodic table 8. Group 1: The alkali metals 9. Group 7: The halogens 10. Group 0: The noble gases The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Chemistry - Chemical Analysis
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - Chemical Analysis

5 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical Analysis’ unit for the NEW AQA Chemistry Specification. Lessons include: Pure substances & mixtures Analysing chromatograms Testing for gases Testing for positive and negative ions Investigative analysis The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
KS3 ~ Year 8 ~ Metal & Acid Reactions
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Metal & Acid Reactions

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.2 unit on ‘Metals & Other Materials’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the three main acids and their chemical formulae - nitric acid, hydrochloric acid and sulphuric acid - students are asked to identify what the three compounds have in common. Students should hopefully identify that they are contain hydrogen atoms. This then leads onto the next slide where students are introduced to the idea of a salt - the compound which forms when an acid and a metal react together. Students are given some information about this reaction and about salts, using this information students will need to answer some questions. Once this task has been completed, students can self-assess their work using the mark scheme provided. Students will then watch a video of a metal reacting with an acid, whilst students watch this video they are asked to write down any observations they make about the reaction, as well as think about what is happening that we can’t see/hear/feel. Students are now shown the word equation for magnesium metal reacting with hydrochloric acid and zinc metal reacting with hydrochloric acid, students are asked to think about the pattern with the products formed from these reactions. Hopefully, students can identify that a salt + hydrogen is formed in each one. Students are now asked to copy and complete a set of word equations for several more metal + acid reactions. This work can be self-assessed once complete. Next, students will conduct an investigation into how different metals react differently with acids. Students will test five metals - copper, iron, zinc, lead and magnesium - with hydrochloric acid. Hopefully, by completing this investigation they will be able to successfully place the metals in order of reactivity, this can be checked using the answers provided on the PowerPoint. Lastly, students need to be able to describe the test for hydrogen gas. Students will firstly be asked to ‘Think > Pair >Share’ their ideas about how this may be carried out, before watching a video to check whether their ideas were correct. Students can then make a note of this test in their books. The plenary task requires students to write a list of key words which were learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Instrumental Analysis
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Instrumental Analysis

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. The lesson begins with a ‘Think > Pair > Share’ task where students are required to discuss sectors which must reply upon efficient and effective instrumental methods of chemical analysis. After a short class discussion, the teacher can discuss the importance of instrumental analysis for environmental and health care sectors. Students will now be shown the difference between qualitative and quantitative methods of chemical analysis. They will then be given a set of statements, students will need to sort these statements into either advantages of disadvantages of instrumental methods of chemical analysis vs. traditional methods. Pupils will need to self-assess their work using the answers provided in the PowerPoint. Next, students will watch a video on flame emission spectroscopy and will need to use information provided in the PowerPoint to answer a set of questions. This work can be self-assessed using the answers provided. Following this, students will be provided with a set of information about this process, they will need to use this information to answer a set of questions. Their answers to these questions can be self-assessed using the mark scheme provided. Lastly, pupils will be shown a diagram showing the results of flame emission spectroscopy tests for different metals. The plenary task requires pupils to write a Whatsapp message about what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Making Salts
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Making Salts

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a definition of a salt and an introduction into chemical reactions between acids and metals to make a salt. Students are shown which salts form from using certain acids and will then need to complete a set of word equations, this work can be self-assessed using the mark scheme included in the PowerPoint. Students will then need to complete a set word equations for a set of reactions between metals and acid, including the balanced symbol equations with state symbols. Students can either peer or self-assess their work using the mark scheme provided. The next part of the lesson focuses on ionic equations, students are asked to write the ionic half equations for the reaction between magnesium and hydrochloric acid. Once students have completed this task, the answer as well as an explanation is included in the PowerPoint so pupils can check their own work. Now students are given a set of chemical reactions, for each one they will need to write the ionic half-equations. This work can also be self-assessed using the mark scheme included. To summarise this section of the lesson students will need to complete a fill-in-the-blank task. The second half of the lesson, pupils will look at the reactions between an acid and a base and be shown how to generate the formulae of salts given the names of the metal or base and the acid. To check their understanding, pupils are now asked to complete a ‘quick check’ task, a set of questions on what they have learnt so far. This work can be self-assessed using the answers provided. Finally, pupils are shown examples of chemical reactions between an acid and a alkali and acid and carbonates. Pupils will need to answer questions about these two types of reactions, work which can be self-assessed using the mark schemes included. The plenary task is a ‘Silent 5’ task, pupils will need to write an account of what they have learned in the lesson today, including details of what they have understood well and what they would like to spend more time on. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Simple and giant covalent structures
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Simple and giant covalent structures

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lessons starts with looking at the way in which we use models to represent the structure of different compounds, models include the 3D ball and stick model, 2D ball and stick model, dot and cross diagrams and displayed formula showing bonds. Pupils are reminded of the limitations of some of these models, this is something they should be able to recount. Pupils are now shown a diagram to show how intermolecular forces act between simple covalent molecules, pupils should be able to explain the difference between the strong covalent bonds between atoms but the weak intermolecular forces between molecules and how this relates to the the low melting and boiling points of simple covalent molecules. The next part of the lesson is going to focus on giant covalent structures, firstly pupils will watch a video and answer a set of questions. Their work can be self-assess using the answers provided on the PowerPoint presentation. Students are then introduced to the three main covalent structures - diamond, graphite and silicon dioxide. Students will be given a set of information on these structures which they will need to use to complete their worksheet on giant covalent structures. To assess their knowledge of this topic there is a set of ‘quick check’ questions, pupils of a higher ability may want to complete these questions in the back of their books without discussing with others. The work can be assessed using the mark scheme provided. The last part of the lesson focuses on fullerenes and graphene - two other giant covalent structures with unique properties. Students are firstly introduced to the structure and uses of these compounds before watching a video and answering questions about them. The work from this task can be self or peer assessed using the answers provided. The plenary task is for pupils to pretend they are a scientist researching the use of nanotubes, fullerenes and grapehene, they need to come up two ideas of how these materials can be used in future technologies. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7  ~ Elements, Atoms & Compounds Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Elements, Atoms & Compounds Homework

(5)
This homework activity is designed for the KS3 Science Course, specifically Year 7 C1.2 Module on ‘Elements, Atoms & Compounds’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
KS3 ~ Year 7 ~ Acids  & Alkalis Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Acids & Alkalis Homework

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 7 C1.4 Module on ‘Acids & Alkalis’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
KS3 ~ Year 8 ~ Separation Techniques Homework
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Separation Techniques Homework

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 8 B2.1 Module on ‘Separation Techniques’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)