Predominately a Chemistry teacher, although I dabble with Biology and Physics too. Most of my schemes of work were planned for either AQA or iGCSE schemes of work at KS4 and the IB at KS5 (although I have no official affiliation with the IB)
Predominately a Chemistry teacher, although I dabble with Biology and Physics too. Most of my schemes of work were planned for either AQA or iGCSE schemes of work at KS4 and the IB at KS5 (although I have no official affiliation with the IB)
18 homework projects on key stage 3 science, linked to the Exploring Science scheme of work.
7A - Cells
7B - Reproduction
7C - Adaptations
7E - Acids and Alkalis
7F - Chemical reactions
7H - Solutions
7I - Energy Resources
7J - Electricity in the Home
8A - Food and Digestion
8C - Microbes and Disease
8E - Classifying Elements
8I - Heating and Cooling
9B - Health and Fitness
9C - Plants
9E - Metals and their reactions
9G - Environmental Chemistry
9L - Pressure
Recycling
These sheets ask questions which when answered summarise all of the Chemistry topics covered on the iGCSE Coordinated course, with one sheet per topic.
They can be used one at a time, at the end of a topic, or at the end of the year as a revision resource
Obviously they don´t go into as much detail as past paper questions but they do provide a basic summary of questions that students must know the answers to in each topic
This lesson was planned as a stand alone investigation lesson for KS3, designed to allow students to work on their practical skills. When observed it got an ´Outstanding´ (for what it is worth), and I have attached the lesson plan.
It involves a ´poisoning´ scenario where students are asked to identify an unknown powder used to poison someone. Students are asked to choose the equipment that they will use, test some named powders and use this to identify the unknown powder. They are then asked to write a letter to a detective (using a level ladder as a guide) explaining how they identified a poison. They should then peer assess against the level ladder.
Nine homework projects for the Exploring Science 7 scheme of work.
7A - Cells
7B - Reproduction
7C/7D - Adaptations
7E - Acids and Alkalis
7F - Simple Chemical Reactions
7H - Solutions
7I - Energy Resources
7J - Electricity in the Home
Recycling
Each project comes with a level ladder style success grid for students to maximise their learning
These PowerPoints were planned as part of the IB scheme of work on Structure and Bonding and cover the necessary content for both the Standard and Higher Level topics. They would also be suitable for other post-16 courses.
Included are fully completed PowerPoints, student versions of the PowerPoints with sections to complete independently and some exam style questions.
Topics included are:
Ionic Bonding
What is ionic bonding?
Common positive and negative ions
Working out the formula of ionic compounds
Giant ionic lattices
Properties of ionic substances
Covalent Bonding
What is covalent bonding?
How to draw Lewis structures
How to tell if a substance will be ionic or covalent
The Octet rule and how it can be broken
Coordinate bonds and compounds which contain them
Resonance structures
VSEPR theory
Shapes of molecules with up to 6 bonding pairs
Shapes of molecules with up to 6 bonding and lone pairs
Giant covalent bonding - diamond, graphite and silica
Intermolecular Bonding
- London forces
- Permanent dipole-permanent dipole forces
- Permanent dipole-induced dipole forces
- Hydrogen bonding
- Solubility and intermolecular forces
Metallic Bonding
How do we describe a metallic structure?
How to predict which metal will have the high melting point
Properties of metals
Properties of alloys
Advanced covalent bonding, electron domains and molecular geometries
Assigning formal charge
Exceptions to the octet rule
Formation of sigma and pi bonds
The composition of single, double and triple bonds
Resonance hybrids and delocalisation
The structure of benzene - Kekule and delocalised
Absorption of UV light in the atmosphere
Catalysis of ozone depletion by CFCs and NOx gases
Hybridisation
sp3, sp2, sp hybridisation: how it happens, resulting shapes and how to identify molecules with each type of hybridisation.
This 86 slide PowerPoint was planned as part of the IB scheme of work on Periodicity, and covers the necessary content for Standard Level topics. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint, a student version of the PowerPoint with sections to complete independently and some exam style questions.
Topics included are:
- The development of the Periodic Table
- The structure and arrangement of the Periodic Table
- How metallic/non-metallic properties change as you go left to right across the periodic table
- How atomic radius of elements changes across periods and down groups, and why this occurs
- How ionic radius of ions changes across periods and down groups, and why this occurs
- How first ionisation energies of elements changes across periods and down groups, and why this occurs
- How electron affinity of elements changes across periods and down groups, and why this occurs
- How electronegativity of elements changes across periods and down groups, and why this occurs
- Properties and reactions of the Group I metals
- Properties and reactions of the Group XVII non-metals
- The acid-base character and reactions of the period 2 and 3 oxides
These sheets ask questions which when answered summarise the whole of the iGCSE Chemistry course, with one sheet per topic.
They can be used one at a time, at the end of a topic, or at the end of the year as a revision resource
Obviously they don´t go into as much detail as past paper questions but they do provide a basic summary of questions that students must know the answers to in each topic
The answers to this exercise are now also available in my shop
Three homework projects for the Exploring Science 7 scheme of work on Acids and alkalis, Simple chemical reactions and Solutions
Each project comes with a level ladder style success grid for students to maximise their learning
This PowerPoint was planned as part of the Higher Level IB scheme of work on Medicinal Chemistry, and covers the necessary content for the D.9 section. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint and a student version of the PowerPoint with sections to complete independently.
Topics covered include:
- Worked example of the identification of aspirin by NMR, IR and Mass Spectrometry
- Worked example of the identification of an unknown compound from NMR, IR and Mass Spectrometry
- Extraction and purification of organic products
- Worked example of hormone concentration using partition coefficients
- How polarity affects the partition coefficients
- Raoult´s Law
- Fractional Distillation
- Drug detection in sports
- Drug detection in forensic science
- Chemistry of breathalyzer tests
- HPLC and Gas chromatography
This PowerPoint was planned as part of the IB scheme of work on Medicinal Chemistry, and covers the necessary content for the D.2 section. It would also be suitable for other post-16 courses.
Included are the fully completed PowerPoint, a student version of the PowerPoint with sections to complete independently and some exam style questions, with markschemes.
Topics covered include:
- History of Aspirin
- Method of Producing Aspirin
- Calculating the % Yield of Aspirin produced from Salicyclic Acid
- Effects of Aspirin
- Soluble Aspirin
- Development of Penicillin
- Structure of Penicllin
- How Penicillin Works
- Antibiotic Resistance
Obviously they don´t go into as much detail as past paper questions but they do provide a basic summary of questions that students must know the answers to in each topic
The answers to these sheets are also included on a separate document, so they make a great independent revision resource
This booklet and accompanying PowerPoints covers the Moles topic for iGCSE Chemistry. It would also be useful for other courses, as it covers all of the topics in the list below.
The booklet is designed to be interactive and to be filled in by the students, accompanied by the PowerPoints. It includes spaces for worked calculations, exercises, past paper questions (taken from the Cambridge iGCSE papers) and two practicals. The answers to the exercises are also provided for the workbook and are shown on the PowerPoints.
What exactly is a mole?
How can we convert between masses and moles?
How do we deal with diatomic molecules?
Converting between mass and moles in compounds
Calculating the % by mass of an element in a compound
Balancing Equations
Reacting Masses
Limiting Reagents
Percentage Yield
Practical - How much copper sulphate can we get from malachite?
Percentage Purity
Empirical Formula
Moles in Gases
Moles in Solutions
Titrations
Practical – What is the concentration of sodium hydroxide?
I also have another scheme of work where this booklet has been altered slightly for the Co-ordinated Science Chemistry moles unit.
This 2 week KS3 scheme of work was designed to take 4x100 minute lessons. The aim of the project is to guide students to research, test, ´market´ and evaluate their own handwarmer.
The lessons are broken down as follows:
Lesson 1 - Research and Planning
Lesson 2 - Testing hand-warmer options
Lesson 3 - Product Design
Lesson 4 - Pitching the design to peers and evaluation
Originally designed to link Science with Business and Enterprise, it could also be used to encourage the use of transferable skills in science, and would make an independent and interactive ´end of year´ activity.
A series of three lessons prepared for the AQA GCSE C3.2 unit of work about hard and soft water, the process of water softening and the purification of water.
Includes PowerPoints, lesson plans, practicals, activities, worksheets, exam questions and videos to accompany the topic.
These revision sheets were designed for year 9 Chemistry pre-iGCSE scheme of work and could be used as revision for the Cambridge Checkpoint Science 9 Chemistry topics.
They may also be useful as revision for weaker GCSE students
Topics: Atomic Structure; Energy Changes; Rates of Reactions; Acids, Bases and Salts; Reactions of metals
4 homework projects suitable for KS4 Chemistry students on Extracting Copper, Oil, Nanoparticles and Smart Materials and Analysing Substances.
Each project comes with a level ladder style success grid, graded A*-D, for students to maximise their learning.
Scheme of work designed for year 9 (starting the GCSE course early) on making salts. However it could also be used for a low-mid ability year 10/11 group
This resource includes:
- A full scheme of work, with objectives, practical activities etc.
- Presentations for the 6 lessons
- Worksheets
- Some exam style questions that could be used as an end of topic test, or as practice questions.
Lesson Titles:
- Recapping acids and alkalis
- Making soluble salts - metals and acids
- Making soluble salts - bases and acids
- Making soluble salts - metal carbonates and acids
- Making soluble salts - alkalis and acids
- Making insoluble salts
27 homework projects on key stage 3 and keystage 4 science, linked to the Exploring Science and GCSE schemes of work.
All come with fully differentiated level ladders to allow for maximum pupil progress
A bargain at less than a pound a project!
Key Stage 3
7A - Cells
7B - Reproduction
7C - Adaptations
7E - Acids and Alkalis
7F - Chemical reactions
7H - Solutions
7I - Energy Resources
7J - Electricity in the Home
8A - Food and Digestion
8C - Microbes and Disease
8E - Classifying Elements
8I - Heating and Cooling
9B - Health and Fitness
9C - Plants
9E - Metals and their reactions
9G - Environmental Chemistry
9L - Pressure
Recycling
Key Stage 4
Genetics
Hydroponics
Extracting Copper
Nanoparticles and Smart Materials
Oil
Analysing Substances
Forces and Momentum
Waves and Communication
Energy and Payback Time
Scheme of work for KS4 energetics (planned for IGCSE but could be used for other exam boards).
Includes PowerPoints, a practical, worksheets with answers and some past paper questions.
Covers:
Endothermic and Exothermic reactions
Use of Q=mcT for calculation of energy released by a fuel
Calorimetry
Calculation of energy changes using bond enthalpy data
What makes a good fuel?
Hydrogen, ethanol and nuclear fuels
This 50 slide PowerPoint was planned as part of the IB schemes of work on Energy. They would also be suitable for other post-16 courses.
Included are fully completed PowerPoints including many examples, student versions of the PowerPoints with sections to complete independently and some exam style questions.
Topics covered include:
- Spontaneity and Disorder
- Entropy
- How to predict the sign of an entropy change
- Entropy across period 2
- Standard Entropy Change: ΔSθ
- Predicting whether a reaction will be spontaneous
- Calculating ΔSθ Universe
- Gibbs Free Energy
- At what temperature does a reaction become feasible?
- Gibbs Free Energy and Equilibrium