Hero image

Dan Walker's Shop

Average Rating4.80
(based on 2873 reviews)

I'm a secondary school maths teacher with a passion for creating high quality resources. All of my complete lesson resources come as single powerpoint files, so everything you need is in one place. Slides have a clean, unfussy layout and I'm not big on plastering learning objectives or acronyms everywhere. My aim is to incorporate interesting, purposeful activities that really make pupils think. I have a website coming soon!

223Uploads

1570k+Views

1606k+Downloads

I'm a secondary school maths teacher with a passion for creating high quality resources. All of my complete lesson resources come as single powerpoint files, so everything you need is in one place. Slides have a clean, unfussy layout and I'm not big on plastering learning objectives or acronyms everywhere. My aim is to incorporate interesting, purposeful activities that really make pupils think. I have a website coming soon!
Coordinates
danwalkerdanwalker

Coordinates

(121)
A powerpoint including examples, worksheets and solutions on plotting coordinates in all 4 quadrants and problem solving involving coordinates. Worksheets at bottom of presentation for printing.
Standard form collect a joke
danwalkerdanwalker

Standard form collect a joke

(27)
Non-calculator sums with standard form is a boring topic, so what better than a rubbish joke to go with it? Pupils answer questions and use the code to reveal a feeble gag.
Percentage of an amount
danwalkerdanwalker

Percentage of an amount

(4)
A complete lesson on finding percentages of an amount using non-calculator methods. Looks at finding 50%, 25%, 75%, 10%, 5%, 20% and 1%. Activities included: Starter: A set of questions where pupils convert the percentages above into their simplified, fraction form. Main: Some examples and quick questions on finding percentages of an amount for pupils to try. A set of questions with a progression in difficulty, from finding simple percentages, to going in reverse and identifying the percentage. The ‘spider diagrams’ are my take on TES user alutwyche’s spiders. An extension task where pupils arrange digits (with some thought) in order to make statements true. Plenary: A nice visual flow chart to reinforce how the calculations required are connected. Printable worksheets and answers included. Please review if you use as any feedback is appreciated!
Equations of parallel lines
danwalkerdanwalker

Equations of parallel lines

(0)
A complete lesson on using knowledge of gradient to find the equation of a line parallel to a given line. Examples, activities, printable worksheets and answers included. Please review it if you buy as any feedback is appreciated!
Interior angles of polygons
danwalkerdanwalker

Interior angles of polygons

(0)
A complete lesson on interior angles of polygons. Activities included: Starter: A slide showing examples and non-examples of interior angles, for pupils to think about a definition, followed by a set of images where pupils must identify any interior angles (sounds easy and dull, but isn’t!) Main: A recap of visual proofs of why the interior angles of a triangle sum to 180 degrees and those of a quadrilateral sum to 360 degrees, leading to the obvious question of “what next?” Prompts for the usual “investigation” into the sum of interior angles for polygons, by splitting into triangles. A set of questions designed to be done with mini whiteboards, starting with basic sums of interior angles, interior angles of regular polygons and finally a few variations (see cover image). A four-part worksheet (one page if printed two-a-side and two-sided) with a similar progression in difficulty. Plenary: A slide summarising the rules encountered, together with some key questions to check for any misconceptions. Printable worksheets and answers included. I’ve also included suggested questions and extensions in the notes boxes at the bottom of each slide. Please review if you buy as any feedback is appreciated!
Pythagoras' theorem in context
danwalkerdanwalker

Pythagoras' theorem in context

(0)
A complete lesson looking at slightly trickier questions requiring Pythagoras’ theorem. For example, calculating areas and perimeters of triangles, given two of the sides. Activities included: Starter: A nice picture puzzle where pupils do basic Pythagoras calculations, to remind them of the methods. Main: Examples of the different scenarios pupils will consider later in the lesson, to remind them of a few area and perimeter basics. Four themed worksheets, one on diagonals of rectangles two on area and perimeter of triangles, and one on area and perimeter of trapeziums. Each worksheet has four questions with a progression in difficulty. Could be used as a carousel or group task. Plenary: A prompt to get pupils discussing what they know about Pythagoras’ theorem. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Measuring angles with a protractor
danwalkerdanwalker

Measuring angles with a protractor

(1)
A complete lesson on how to use a protractor properly. Includes lots of large, clear, animated examples that make this fiddly topic a lot easier to teach. Designed to come after pupils have been introduced to acute, obtuse and reflex angles and they can already estimate angles. Activities included: Starter: A nice set of problems where pupils have to judge whether given angles on a grid are acute, 90 degrees or obtuse. The angles are all very close or equal to 90 degrees, so pupils have to come up with a way (using the gridlines) to decide. Main: An extended set of examples, intended to be used as mini whiteboard questions, where an angle is shown and then a large protractor is animated, leaving pupils to read off the scale and write down the angle. The range of examples includes measuring all angle types using either the outer or inner scale. It also includes examples of subtle ‘problem’ questions like the answer being between two dashes on the protractor’s scale or the lines of the angle being too short to accurately read off the protractor’s scale. These are all animated to a high standard and should help pupils avoid developing any misconceptions about how to use a protractor. Three short worksheets of questions for pupils to consolidate. The first is simple angle measuring, with accurate answers provided. The second and third offer more practice but also offer a deeper purpose - see the cover image. Instructions for a game for pupils to play in pairs, basically drawing random lines to make an angle, both estimating the angle, then measuring to see who was closer. Plenary: A spot the mistake animated question to address misconceptions. As always, printable worksheets and answers included. Please do review if you buy, the feedback is appreciated!
Perimeter problem solving lesson
danwalkerdanwalker

Perimeter problem solving lesson

(0)
A complete lesson of more interesting problems involving perimeter. I guess they’re the kind of problems you might see in the Junior Maths Challenge. Includes opportunities for pupils to be creative and make their own questions. Activities included: Starter: A perimeter puzzle to get pupils thinking, where they make changes to shapes without effecting the perimeter. Main: A set of four perimeter problems (on one page) for pupils to work on in pairs, plus some related extension tasks that will keep the most able busy. A matching activity, where pupils match shapes with different shapes but the same perimeter, using logic. I would extend this task further by getting them to put each matching set in size order according to their areas, to address the misconception of confusing area and perimeter. Pupils are then prompted to design their own shapes where the perimeters are the same. Plenary: You could showcase some pupil designs but much better, use all of their answers to create a new matching puzzle. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Solving linear equations of the form ax+b=c
danwalkerdanwalker

Solving linear equations of the form ax+b=c

(0)
A complete lesson on solving two step equations of the form ax+b=c using the balancing method. Designed to come after pupils have solved using a flowchart/inverse operations. Activities included: Starter: A set of questions to check that pupils can solve one step equations using the balancing method. Main: A prompt for pupils to consider a two step equation. An animated solution to this equation, showing physical scales to help reinforce the balancing idea. An example-problem pair, to model the method and allow pupils to try. A set of questions with a variation element built in. Pupils could be extended by asking them to predict answers, or to explain the connections between answers after finishing them. A related, more challenging task of solving equations by comparing them to a given equation, plus a suggested extension task for pupils to think more mathematically and creatively. Plenary: A closer look at a question, looking at the two different balancing approaches that could be taken (see cover slide). Depending on time, pupils could go back and attempt the previous questions using the second approach. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Sine rule problem problem solving
danwalkerdanwalker

Sine rule problem problem solving

(0)
A complete lesson of more challenging problems involving the sine rule. Designed to come after pupils have spent time on basic questions. Mistake on previous version now corrected - please contact me for an updated copy if you have already purchased this. Activities included: Starter: A set of six questions, each giving different combinations of angles and sides. Pupils have to decide which questions can be done with the sine rule. In fact they all can, the point being that questions aren’t always presented in the basic ‘opposite pairs’ format. Pupils can then answer these questions, to check they can correctly apply the sine rule. Main: A set of eight more challenging questions that pupils could work on in pairs. Each one is unique, with no examples offered, and therefore I’d class this as a problem solving lesson - pupils may need to adopt a general approach of working out what they can at first, and seeing where this takes them. Questions also require knowledge from other topics including angle rules, shape properties, bearings, and the sine graph. I’ve provided full worked answers FYI, but I would get pupils discussing answers and presenting to the class. Plenary: A prompt for pupils to reflect on possible rounding errors. Most of the questions have several steps, so it is worth getting pupils to think about how to avoid rounding errors. I’ve left each question as a full slide, but I’d print them 4-on-1 and 2-sided, so that you’d only need to print one worksheet per pair. Please review if you buy as any feedback is appreciated!
Sine rule ambiguous case
danwalkerdanwalker

Sine rule ambiguous case

(1)
A complete lesson on the scenario of using the sine rule to find an obtuse angle in a triangle. Given the connection this has with triangle congruence and the graph of sine, these ideas are also explored in the lesson. Designed to come after pupils have spent time doing basic sine rule questions and have also encountered the graph of sine beyond 90 degrees. Activities included: Starter: A goal-free question to get pupils thinking, that should help recap the sine rule and set the scene for the rest of the lesson. Main: A prompt for pupils to construct a triangle given SSA, then a closer look at both possible answers. Depending on the class, this could be a good chance to talk about SSA being an insufficient condition for congruence. A related question on finding an unknown angle using the sine rule. Pupils know there are two answers (having seen the construction), but can they work out both answers? This leads into a closer look at the symmetry property of the sine graph, and some quick questions on this theme for pupils to try. Then back to the previous question, to find the second answer. This is followed by four similar questions for pupils to practice (finding an obtuse angle using the sine rule) Two extension questions. Plenary: A slide to summarise the lesson as simply as possible. Answers and printable worksheets included. Please review if you buy as any feedback is appreciated!
Area of circles problem solving
danwalkerdanwalker

Area of circles problem solving

(1)
A complete lesson on areas of composite shapes involving circles and/or sectors. Activities included: Starter: A matching activity using logic more than area rules. Main: Two sets of challenging questions. Opportunity for pupils to be creative/artistic and design their own puzzles. Plenary: Discussion of solutions, or pupils could attempt each other’s puzzles. Printable worksheets and answers included. Please review it if you buy as any feedback is appreciated!
Solving basic trigonometric equations
danwalkerdanwalker

Solving basic trigonometric equations

(1)
A complete lesson on solving equations of the form sinx = a, asinx = b and asinx+b=0 (or with cos or tan) in the range 0 to 360 degrees. Designed to come after pupils have spent time looking at the functions of sine, cosine and tangent, so that they are familiar with the symmetry properties of these functions. See my other resources for lessons on these precursors. I made this to use with my further maths gcse group, but could be used with A-level classes too. Activities included: Starter: A set of four questions, effectively equations but presented as visual graph problems, to remind pupils of the symmetry properties of sine and cosine and the fact that tangent repeats every 180 degrees. Main: An example to transition from a visual problem to a formal, worded problem, and a reminder of the symmetry properties of sine and cosine. Five examples of solving trigonometric equations of increasing difficulty, including graphical representations to help pupils understand. A set of similar questions for pupils to do independently. I’ve made this into a worksheet where the graphs are included, to scaffold the work. Includes an extension task where pupils create equations with a required number of solutions. Plenary: A “spot the mistake” that addresses a few common misconceptions. Printable worksheets and answers provided. Please review f you buy as any feedback is appreciated!
Pythagoras harder problems
danwalkerdanwalker

Pythagoras harder problems

(1)
A set of challenging activities using Pythagoras’ theorem. Activities included: Starter: Given two isosceles triangles, pupils work out which one has the larger area. Main: Examples/practice questions, followed by two sets of questions on the theme of comparing area and perimeter of triangles. Both sets start with relatively straight forward use of Pythagoras’ theorem, but end with an area=perimeter question, where pupils ideally use algebra to arrive at an exact, surd answer. Plenary: Not really a plenary, but a very beautiful puzzle (my take on the spiral of Theodorus) with an elegant answer.
Pythagoras' theorem - applied to coordinate geometry problems
danwalkerdanwalker

Pythagoras' theorem - applied to coordinate geometry problems

(0)
A complete lesson on the theme of using Pythagoras’ theorem to look at the distance between 2 points. A good way of combining revision of Pythagoras, surds and coordinates. Could also be used for a C1 class about to do coordinate geometry. Activities included: Starter: Pupils estimate square roots and then see how close they were. Can get weirdly competitive. Main: Examples and worksheets with a progression of difficulty on the theme of distance between 2 points. For the first worksheet, pupils must find the exact distance between 2 points marked on a grid. For the second worksheet, pupils find the exact distance between 2 coordinates (without a grid). For the third worksheet, pupils find a missing coordinate, given the exact distance. There is also an extension worksheet, where pupils mark the possible position for a second point on a grid, given one point and the exact distance between the two points. I always print these worksheets 2 per page, double sided, so without the extension this can be condensed to one page! It may not sound thrilling, but this lesson has always worked really well, with the gentle progression in difficulty being enough to keep pupils challenged, without too much need for teacher input. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Fibonacci sequences with simultaneous linear  equations
danwalkerdanwalker

Fibonacci sequences with simultaneous linear equations

(0)
The second of two lessons on Fibonacci sequences with the 9-1 GCSE specification in mind. Please see my other resources for the first lesson, although this also works as a stand-alone lesson. Inspired by a sample exam paper question where pupils had to work out the first two terms of a Fibonacci sequence, given the 3rd and 6th terms. Activities included: Starter: A set of simultaneous linear equation questions, to check pupils can apply the basic method. Main: A nice puzzle to get pupils thinking about Fibonacci sequences. Examples and a set of questions with a progression in difficulty, on the main theme of finding the first terms using simultaneous linear equations. A lovely extension puzzle where pupils investigate a set of Fibonacci sequences with a special property. Plenary: A brief look at some other curious properties of the 1, 1, 2, 3, 5, … Fibonacci sequence, ending with a few iconic images of spirals in nature. Slides could be printed as worksheets, although lesson has been designed to be projected. Answers included throughout. Please review if you buy as any feedback is appreciated!
Trigonometry - SOHCAHTOA in context
danwalkerdanwalker

Trigonometry - SOHCAHTOA in context

(0)
A set of questions in real-life scenarios, where pupils use SOHCAHTOA to find angles an distances. Activities included: Starter: Some basic SOHCAHTOA questions to test whether pupils can use the rules. Main: A set of eight questions in context. Includes a mix of angle of elevation and angle of depression questions, in a range of contexts. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
SOHCAHTOA discovery lesson
danwalkerdanwalker

SOHCAHTOA discovery lesson

(0)
A complete lesson for first introducing how to find angles in a right-angled triangle using a trig ratio, but as a pupil-led investigation. Intended to come after pupils have practiced identifying hypotenuse/opposite/adjacent and calculating sin/cos/tan. Activities included: Starter: A set of questions to check pupils can correctly calculate sin, cos and tan from a triangle’s dimensions. Main: A structured investigation where pupils: Investigate sin, cos and tan for triangles of different size but the same angles (i.e. similar triangles), by measuring dimensions of triangles and calculating ratios Investigate what happens as the angle varies by measuring dimensions of triangles, calculating ratios, and plotting separate graphs of sin, cos and tan. Using their graphs to estimate angles for conventional SOHCAHTOA questions (i.e. finding an angle given two sides) Plenary: A prompt to get pupils to discuss/reflect on their understanding of the use of trig ratios. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Trigonometry - SOHCAHTOA revision lesson
danwalkerdanwalker

Trigonometry - SOHCAHTOA revision lesson

(0)
A complete revision lesson for pupils to practice SOHCAHTOA, both finding sides and angles. Activities included: Starter: A set of questions to test whether pupils can find sides and angles, and give a chance to clear up any misconceptions. Main: A treasure hunt of SOHCAHTOA questions. Straight forward questions, but should still generate enthusiasm. Could also be used as a a more scaffolded task, with pupils sorting the questions into sin, cos or tan questions before starting. Activity has been condensed to two pages, so less printing than your average treasure hunt! Bonus: Another set of straight-forward questions, that could be given for homework or at a later date to provide extra practice. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Equation of a circle
danwalkerdanwalker

Equation of a circle

(1)
A complete lesson on the equation of a circle with centre the origin. The intention is to get pupils familiar with not only the format of the equation of a circle, and a derivation of the equation, but also problems involving coordinates on a circle. Activities included: Starter: A related question where pupils try to identify which of three given points are closer to the origin, before considering what must be true if points are a given distance from the origin. Main: The starter leads directly into a clear definition of the equation of a circle, followed by a set of quick diagnostic whole-class questions to check for understanding. Example-question pairs of increasingly difficult problems involving coordinates on circles, followed by a set of three worksheets. The last one is more of a mini-investigation, with opportunities for pupils to conjecture and generalise. Plenary: Three final puzzles to check for understanding. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!