Hero image

Dan Walker's Shop

Average Rating4.80
(based on 2874 reviews)

I'm a secondary school maths teacher with a passion for creating high quality resources. All of my complete lesson resources come as single powerpoint files, so everything you need is in one place. Slides have a clean, unfussy layout and I'm not big on plastering learning objectives or acronyms everywhere. My aim is to incorporate interesting, purposeful activities that really make pupils think. I have a website coming soon!

223Uploads

1575k+Views

1610k+Downloads

I'm a secondary school maths teacher with a passion for creating high quality resources. All of my complete lesson resources come as single powerpoint files, so everything you need is in one place. Slides have a clean, unfussy layout and I'm not big on plastering learning objectives or acronyms everywhere. My aim is to incorporate interesting, purposeful activities that really make pupils think. I have a website coming soon!
Mystery squares
danwalkerdanwalker

Mystery squares

(1)
A simple but adaptable interactive picture quiz in powerpoint to dress up asking questions - ideal for starters or plenaries. Think Catchphrase but with 2 different images for 2 teams and pictures of anything you fancy. You provide the questions. See separate instructions.
Smuggle
danwalkerdanwalker

Smuggle

(7)
Based on the card game, pupils use their percentage and fibbing skills to win.
Trigonometric ratios interactive
danwalkerdanwalker

Trigonometric ratios interactive

(1)
A GSP file (requires Geometer's Sketchpad software to open) which measures, for a right-angled triangle, the sides and ratios sin, cos and tan. The triangle can be changed dynamically. Also shows the graphs of the ratios. Could be used to introduce trigonometric ratios, explain the graphs of sine, cosine and tangent up to 90 degrees or to generate questions on SOHCAHTOA.
Parametric functions lock game
danwalkerdanwalker

Parametric functions lock game

(5)
Worksheet where answers to questions are used to obtain a 3-digit code (which I set as the combination to a lockable money box containing a prize). Questions on all aspects of parametric functions as seen in C4
Substitution dice game
danwalkerdanwalker

Substitution dice game

(5)
Starts as a dice substitution game but goes a lot deeper by considering the expressions as functions and the effect this has on potential strategies for playing the game. Only suitable for able GCSE students - requires a good grasp of quadratic functions. Nice way of revising and exploring the connection between expressions and functions.
Making a percentage change (non calculator)
danwalkerdanwalker

Making a percentage change (non calculator)

(0)
A complete lesson on increasing or decreasing by a percentage. Activities included: Starter: A template for pupils to work out lots of different percentages of £30 Main: Examples and a set of straight-forward questions making percentage changes. A connect 4 game for pupils to play in pairs, taking it in turns to work out percentage changes and win squares on a grid. A few questions to discuss about the game. A puzzle where pupils arrange numbers and percentage change statements to make a loop. Plenary: Some examples looking at making a percentage decrease a different way - eg decreasing by 25% by directly working out 75% Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Describing a percentage change
danwalkerdanwalker

Describing a percentage change

(0)
A complete lesson on expressing a change as a percentage. Activities included: Starter: A puzzle to remind pupils of how to make a percentage change. Main: Examples and quick questions for pupils to try, on working out the percentage change. A worksheet with a progression in difficulty and a mix of question types. An extension task involving a combination of percentage changes. Plenary: A ‘spot the mistake’ question. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Making a percentage change using a multiplier
danwalkerdanwalker

Making a percentage change using a multiplier

(0)
A complete lesson on using calculators to directly make percentage changes, e.g. increasing by 5% by multiplying by 1.05 Activities included: Starter: A recap on making a percentage change in stages, e.g. increasing something by 5% by working out 5% and adding it to the original amount. Main: Examples and quick questions for pupils to try, along with some diagnostic questions to hopefully anticipate a few misconceptions. A worksheet of questions with a progression in difficulty. An extension task/investigation designed to challenge the misconception that you can reverse a percentage increase by decreasing by the same percentage. Plenary: A question in context - working out a restaurant bill including a tip. Printable worksheets and answers included. Please review if you buy, as any feedback is appreciated!
Area of a trapezium
danwalkerdanwalker

Area of a trapezium

(0)
A complete lesson for introducing the trapezium area rule. Activities included: Starter: Non-calculator BIDMAS questions relating to the calculations needed to area of a trapezium. A good chance to discuss misconceptions about multiplying by a half. Main: Reminder of shape properties of a trapezium Example-question pairs, giving pupils a quick opportunity to try and receive feedback. A worksheet of straight forward questions with a progression in difficulty, although I have also built in a few things for more able students to think about. (eg what happens if all the measurement double?) A challenging extension task where pupils work in reverse, finding measurements given areas. Plenary: Nice visual proof of rule by relating to the rule for the area of a parallelogram. Printable worksheets and answers included. Please review it if you buy as any feedback is appreciated!
Area of a sector
danwalkerdanwalker

Area of a sector

(0)
A complete lesson on finding the area of a sector. Activities included: Starter: Collect-a-joke starter on areas of circles to check pupils can use the rule. Main: Example-question pairs, giving pupils a quick opportunity to try and receive feedback. A straight-forward worksheet with a progression in difficulty. A challenging, more open-ended extension task where pupils try to find a sector with a given area. Plenary: A brief look at Florence Nightingale’s use of sectors in her coxcomb diagrams, to give a real-life aspect. Printable worksheets and answers included. Please review it if you buy as any feedback is appreciated!
Area of a triangle
danwalkerdanwalker

Area of a triangle

(0)
A complete lesson for introducing the area rule for a triangle. Activities included: Starter: Questions to check pupils can find areas of parallelograms (I always teach this first, as it leads to an explanation of the rule for a triangle). Main: A prompt to get pupils thinking (see cover image) Examples and a worksheet where pupils must identify the height and measure to estimate area. Examples and a worksheet where pupils must select the relevant information from not-to-scale diagrams. Simple extension task of pupils drawing as many different triangles with an area of 12 as they can. Plenary: A sneaky puzzle with a simple answer that reinforces the basic area rule. Printable worksheets and answers included. Please review it if you buy as any feedback is appreciated!
Comparing the size of two fractions
danwalkerdanwalker

Comparing the size of two fractions

(0)
A complete lesson for first teaching how to compare fractions using common denominators. Intended as a precursor to both ordering fractions and adding or subtracting fractions, as it requires the same skills. Activities included: Starter: Some quick questions to test if pupils can find the lowest common multiple of two numbers. Main: A prompt to generate discussion about different methods of comparing the size of two fractions. Example question pairs on comparing using equivalent fractions, to quickly assess if pupils understand the method. A set of straightforward questions with a progression in difficulty. A challenging extension where pupils find fractions halfway between two given fractions. Plenary: A question in context to reinforce the key skill and also give some purpose to the skill taught in the lesson. Optional worksheets (ie no printing is really required, but the option is there if you want) and answers included. Please review if you buy as any feedback is appreciated!
Using prime factors to find all factors
danwalkerdanwalker

Using prime factors to find all factors

(0)
A complete lesson on prime factors. Intended as a challenging task to come after pupils are familiar with the process of expressing a number as a product of prime factors (see my other resources for a lesson on this). Activities included: Starter: Questions to test pupils can list all factors of a number using factor pairs. Main: Pupils find all factors of a number using a different method - by starting with the prime factor form of a number and considering how these can be combined into factor pairs. Links well to the skill of testing combinations that is in the new GCSE specification. Possible extension of pupils investigating what determines how many factors a number has. Plenary: A look at why numbers that are products of three different primes must have 8 factors. No worksheets required and answers included throughout. Please review it if you buy as any feedback is appreciated!
Product of prime factors
danwalkerdanwalker

Product of prime factors

(0)
A complete lesson for first teaching pupils how to express a number as a product of its prime factors using a factor tree. Activities included: Starter: Three puzzles relating to prime numbers, intended to increase pupils’ familiarity with them. Main: Examples and questions (with a progression of difficulty and some intrigue). Plenary A ‘spot the mistake’ question. No worksheets required and answers included throughout. Please review it if you buy as any feedback is appreciated!
Polygons rich task
danwalkerdanwalker

Polygons rich task

(0)
A complete lesson on the theme of star polygons. An excellent way to enrich the topic of polygons, with opportunities for pupils to explore patterns, use notation systems, and make predictions & generalisations. No knowledge of interior or exterior angles needed. The investigation is quite structured and I have included answers, so you can see exactly what outcomes you can hope for, and pre-empt any misconceptions. Pupils investigate what happens when you connect every pth dot on a circle with n equally spaced dots on their circumference. For p>1 this generates star polygons, defined by the notation {n,p}. For example, {5,2} would mean connect every 2nd dot on a circle with 5 equally spaced dots, leading to a pentagram (see cover image). Pupils are initially given worksheets with pre-drawn circles to explore the cases {n,2} and {n,3}, for n between 3 and 10. After a chance to feedback on this, pupils are then prompted to make a prediction and test it. After this, there is a set of deeper questions, for pupils to try to answer. If pupils successfully answer those questions, they could make some nice display work! To finish the lesson, I’ve included a few examples of star polygons in popular culture and a link to an excellent short video about star polygons, that references all the ideas pupils have considered in the investigation. I’ve included key questions and other suggestions in the notes boxes. Please review if you buy as any feedback is appreciated!
Circle theorems lesson 7
danwalkerdanwalker

Circle theorems lesson 7

(0)
A complete lesson on the theorem that tangents from a point are equal. Assumes pupils can already use the theorems that: The angle at the centre is twice the angle at the circumference The angle in a semicircle is 90 degrees Angles in the same same segment are equal .Opposite angles in a cyclic quadrilateral sum to 180 degrees A tangent is perpendicular to a radius Angles in alternate segments are equal so that more varied questions can be asked. Please see my other resources for lessons on these theorems. Activities included: Starter: Instructions for pupils to discover the theorem, by drawing tangents and measuring. Main: Slides to clarify why this theorem usually involves isosceles triangles. Related examples, finding missing angles. A set of eight questions using the theorem (and usually another theorem or angle fact). Two very sneaky extension questions. Plenary: An animation of the proof without words, the intention being that pupils try to describe the steps. Printable worksheets and answers included. Please review if you buy, as any feedback is appreciated!
Circle theorems lesson 5
danwalkerdanwalker

Circle theorems lesson 5

(0)
A complete lesson on the theorem that a tangent is perpendicular to a radius. Assumes pupils can already use the theorems that: The angle at the centre is twice the angle at the circumference The angle in a semicircle is 90 degrees Angles in the same same segment are equal .Opposite angles in a cyclic quadrilateral sum to 180 degrees so that more varied questions can be asked. Please see my other resources for lessons on these theorems. Activities included: Starter: Some basic recap questions on theorems 1 to 4 Main: Instructions for pupils to discover the rule, by drawing tangents and measuring the angle to the centre. A set of six examples, mostly using more than one theorem. A set of eight similar questions for pupils to consolidate. A prompt for pupils to create their own questions, as an extension. Plenary: A proof by contradiction of the theorem. Printable worksheets and answers included. Please do review if you buy, as any feedback is greatly appreciated!
Circle theorems lesson 6
danwalkerdanwalker

Circle theorems lesson 6

(0)
A complete lesson on the alternate segment theorem. Assumes pupils can already use the theorems that: The angle at the centre is twice the angle at the circumference The angle in a semicircle is 90 degrees Angles in the same same segment are equal .Opposite angles in a cyclic quadrilateral sum to 180 degrees A tangent is perpendicular to a radius so that more varied questions can be asked. Please see my other resources for lessons on these theorems. Activities included: Starter: Some basic questions to check pupils know what the word subtend means. Main: Animated slides to define what an alternate segment is. An example where the angle in the alternate segment is found without reference to the theorem (see cover image), followed by three similar questions for pupils to try. I’ve done this because if pupils can follow these steps, they can prove the theorem. However this element of the lesson could be bypassed or used later, depending on the class. Multiple choice questions where pupils simply have to identify which angles match as a result of the theorem. In my experience, they always struggle to identify the correct angle, so these questions really help. Seven examples of finding missing angles using the theorem (plus a second theorem for most of them). A set of eight similar problems for pupils to consolidate. An extension with two variations -an angle chase of sorts. Plenary: An animation of the proof without words, the intention being that pupils try to describe the steps. Printable worksheets and answers included. Please review if you buy, as any feedback is appreciated.
Circle theorems lesson 8
danwalkerdanwalker

Circle theorems lesson 8

(0)
A complete lesson on the theorem that a perpendicular bisector of a chord passes through the centre of a circle. Assumes pupils can already use the theorems that: The angle at the centre is twice the angle at the circumference The angle in a semicircle is 90 degrees Angles in the same same segment are equal .Opposite angles in a cyclic quadrilateral sum to 180 degrees A tangent is perpendicular to a radius Angles in alternate segments are equal Tangents from a point are equal so that more varied questions can be asked. Please see my other resources for lessons on these theorems. Activities included: Starter: An animation reminding pupils about perpendicular bisectors, with the intention being that they would then practice this a few times with ruler and compass. Main: Instructions for pupils to investigate the theorem, by drawing a circle, chord and then bisecting the chord. Slides to clarify the ‘two-directional’ nature of the theorem. Examples of missing angle or length problems using the theorem (plus another theorem, usually) A similar set of eight questions for pupils to consolidate. An extension prompt for pupils to use the theorem to locate the exact centre of a given circle. Plenary: An animation of the proof without words, the intention being that pupils try to describe the steps. Printable worksheets and answers included. Please review if you buy, as any feedback is appreciated!