Hero image

Mr Science

Average Rating4.30
(based on 93 reviews)

Head of science Check out my Youtube channel for free videos to support your teaching, https://www.youtube.com/mrscience88

156Uploads

163k+Views

49k+Downloads

Head of science Check out my Youtube channel for free videos to support your teaching, https://www.youtube.com/mrscience88
IGCSE Edexcel Biology (9-1) Eukaryotic and Prokaryotic organisms *UPDATED*
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Eukaryotic and Prokaryotic organisms *UPDATED*

(0)
Designed for the new specification IGCSE edexcel course but can be used for other examination boards. Covers: (b) Variety of living organisms 1.2 describe the common features shown by eukaryotic organisms: plants, animals, fungi and protoctists 1.3 describe the common features shown by prokaryotic organisms such as bacteria 1.4 understand the term pathogen and know that pathogens may include fungi, bacteria, protoctists or viruses Contains exam style questions
AQA GCSE Biology - The use of hormones to treat infertility
mr_sciencemr_science

AQA GCSE Biology - The use of hormones to treat infertility

(1)
Designed for the new specification AQA GCSE( covers spec point 4.5.3.6 ) course but can be modified for other exam boards. 20 slides covering the use of hormones to treat infertility: Describe what is meant by infertility and suggest reasons for it Describe the steps used in IVF Describe how FSH and IVF can be used to help treat infertility Evaluate from the perspective of patients and doctors the methods of treating infertility
International A-level Biology Edexcel Topic 3- The cell cycle
mr_sciencemr_science

International A-level Biology Edexcel Topic 3- The cell cycle

(0)
Designed for the new specification International A-level edexcel course but can be modified for other exam boards. 21 slides covering The cell cycle By the end of the powerpoint students would have covered: -The cell cycle’s role in the production of identical daughter cells for growth and asexual reproduction. Powerpoint contains exam questions
AQA GCSE Biology- Cell specialisation and cell differentiation
mr_sciencemr_science

AQA GCSE Biology- Cell specialisation and cell differentiation

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 32 slides covering Cell structure (cell specialisation and cell differentiation). By the end of the powerpoint students would have covered: **4.1.1.3 Cell specialisation ** Students should be able to, when provided with appropriate information, explain how the structure of different types of cell relate to their function in a tissue, an organ or organ system, or the whole organism. Cells may be specialised to carry out a particular function: sperm cells, nerve cells and muscle cells in animals root hair cells, xylem and phloem cells in plants. **4.1.1.4 Cell differentiation ** Students should be able to explain the importance of cell differentiation. As an organism develops, cells differentiate to form different types of cells. Most types of animal cell differentiate at an early stage. Many types of plant cells retain the ability to differentiate throughout life. In mature animals, cell division is mainly restricted to repair and replacement. As a cell differentiates it acquires different sub-cellular structures to enable it to carry out a certain function. It has become a specialised cell.
AQA GCSE Biology- Diffusion
mr_sciencemr_science

AQA GCSE Biology- Diffusion

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 32 slides covering Diffusion. (contains a optional practical) By the end of the powerpoint students would have covered: Substances may move into and out of cells across the cell membranes via diffusion. Diffusion is the spreading out of the particles of any substance in solution, or particles of a gas, resulting in a net movement from an area of higher concentration to an area of lower concentration. Some of the substances transported in and out of cells by diffusion are oxygen and carbon dioxide in gas exchange, and of the waste product urea from cells into the blood plasma for excretion in the kidney. Students should be able to explain how different factors affect the rate of diffusion. Factors which affect the rate of diffusion are: the difference in concentrations (concentration gradient) the temperature the surface area of the membrane. A single-celled organism has a relatively large surface area to volume ratio. This allows sufficient transport of molecules into and out of the cell to meet the needs of the organism. Students should be able to calculate and compare surface area to volume ratios. Students should be able to explain the need for exchange surfaces and a transport system in multicellular organisms in terms of surface area to volume ratio. Students should be able to explain how the small intestine and lungs in mammals, gills in fish, and the roots and leaves in plants, are adapted for exchanging materials. In multicellular organisms, surfaces and organ systems are specialised for exchanging materials. This is to allow sufficient molecules to be transported into and out of cells for the organism’s needs. The effectiveness of an exchange surface is increased by: having a large surface area a membrane that is thin, to provide a short diffusion path (in animals) having an efficient blood supply (in animals, for gaseous exchange) being ventilated.
AQA GCSE Biology- Animal and plant cells
mr_sciencemr_science

AQA GCSE Biology- Animal and plant cells

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 15 slides covering animal and plant cells. By the end of the powerpoint students would have covered: **4.1.1.2 Animal and plant cells ** Students should be able to explain how the main sub-cellular structures, including the nucleus, cell membranes, mitochondria, chloroplasts in plant cells and plasmids in bacterial cells are related to their functions. Most animal cells have the following parts: -a nucleus -cytoplasm -a cell membrane -mitochondria -ribosomes. In addition to the parts found in animal cells, plant cells often have: -chloroplasts -a permanent vacuole filled with cell sap. Plant and algal cells also have a cell wall made of cellulose, which strengthens the cell. Students should be able to use estimations and explain when they should be used to judge the relative size or area of sub-cellular structures.
Plant specialisation
mr_sciencemr_science

Plant specialisation

(1)
Check out my other resources at www.tes.com/teaching-resources/shop/mr_science Designed for the new specification AQA GCSE course (covers spec point 4.1.1.3) but can be modified for other exam boards. 13 slides covering Plant specialisation. By the end of the powerpoint students would have covered: -Describe how specialised cells in a plant carry out a particular function -Identify different parts of specialised plant cells and relate these identified parts to their function.
Contraception/ controlling fertility
mr_sciencemr_science

Contraception/ controlling fertility

(0)
Designed for the new specification AQA GCSE( covers spec point 4.5.3.5 ) course but can be modified for other exam boards. 16 slides covering Contraception: -Be able to describe what contraception is and list examples -List the advantages and disadvantages of different contraceptives -Evaluate the different hormonal and non-hormonal methods of contraception
AQA A2 Biology assessment tracker
mr_sciencemr_science

AQA A2 Biology assessment tracker

(0)
Matches the AQA A-level biology specification on kerboodle. Intended to track assessment marks at A-level You can manipulate the grade boundary to your schools needs simple fill in the % marks column and the spread sheet will generate the grade.
AQA Organisation revision
mr_sciencemr_science

AQA Organisation revision

(0)
Designed to use as a revision tool to help students summarise content from Organisation. Alternatively can be given as a homework task. Resource contains 3 revision mats.
OCR A-level biology lipids
mr_sciencemr_science

OCR A-level biology lipids

(0)
A great simple resource to teach lipids, powerpoint contains exam questions and when I taught this lesson I used slides 6 and 12 for group activities. www.tes.com/teaching-resources/shop/mr_science
AQA GCSE Biology - Levels of organisation
mr_sciencemr_science

AQA GCSE Biology - Levels of organisation

(0)
Check out my other resources at: www.tes.com/teaching-resources/shop/mr_science Designed for the new specification AQA GCSE( covers spec point 4.7.2 ) course but can be modified for other exam boards. 27 slides covering Levels of organisation. By the end of the powerpoint students would have covered: 4.7.2.1 Levels of organisation
AQA Cell biology revision
mr_sciencemr_science

AQA Cell biology revision

(0)
Designed to use as a revision tool to help students summarise content from Cell biology. Alternatively can be given as a homework task. Contains 2 revision mats Print off in A3. www.tes.com/teaching-resources/shop/mr_science
Heart worksheet -Biology - IGCSE/GCSE (PDF)
mr_sciencemr_science

Heart worksheet -Biology - IGCSE/GCSE (PDF)

(0)
Pupils label the internal and external structure of the heart. There is also a word fill task at the bottom of the sheet. This worksheet can be used for pupils on the GCSE/IGCSE course.It can also be used to help A-level pupils review prior learning. Worksheet comes in PDF form.
IGCSE Edexcel Biology (9-1) Cloning
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Cloning

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: (d) Cloning 5.17B describe the process of micropropagation (tissue culture) in which explants are grown in vitro 5.18B understand how micropropagation can be used to produce commercial quantities of genetically identical plants with desirable characteristics 5.19B describe the stages in the production of cloned mammals involving the introduction of a diploid nucleus from a mature cell into an enucleated egg cell, illustrated by Dolly the sheep 5.20B understand how cloned transgenic animals can be used to produce human proteins
AQA GCSE Biology- Stem cells
mr_sciencemr_science

AQA GCSE Biology- Stem cells

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 20 slides covering Stem cells. By the end of the powerpoint students would have covered: A stem cell is an undifferentiated cell of an organism which is capable of giving rise to many more cells of the same type, and from which certain other cells can arise from differentiation. Students should be able to describe the function of stem cells in embryos, in adult animals and in the meristems in plants. Stem cells from human embryos can be cloned and made to differentiate into most different types of human cells. Stem cells from adult bone marrow can form many types of cells including blood cells. Meristem tissue in plants can differentiate into any type of plant cell, throughout the life of the plant. Knowledge and understanding of stem cell techniques are not required. Treatment with stem cells may be able to help conditions such as diabetes and paralysis. In therapeutic cloning an embryo is produced with the same genes as the patient. Stem cells from the embryo are not rejected by the patient’s body so they may be used for medical treatment. The use of stem cells has potential risks such as transfer of viral infection, and some people have ethical or religious objections. Stem cells from meristems in plants can be used to produce clones of plants quickly and economically. • Rare species can be cloned to protect from extinction. • Crop plants with special features such as disease resistance can be cloned to produce large numbers of identical plants for farmers.
AQA GCSE Biology - DNA
mr_sciencemr_science

AQA GCSE Biology - DNA

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 41 slides covering DNA: By the end of the powerpoint students would have covered: 4.6.1.4 DNA and the genome 4.6.1.5 DNA structure (biology only)
IGCSE Edexcel Biology (9-1) Inheritance *Updated*
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Inheritance *Updated*

(0)
Designed for the new specification IGCSE edexcel course but can be used for other examination boards. Covers: (b) Inheritance 3.14 understand that the genome is the entire DNA of an organism and that a gene is a section of a molecule of DNA that codes for a specific protein 3.15 understand that the nucleus of a cell contains chromosomes on which genes are located 3.16B describe a DNA molecule as two strands coiled to form a double helix, the strands being linked by a series of paired bases: adenine (A) with thymine (T), and cytosine © with guanine (G) 3.17B understand that an RNA molecule is single stranded and contains uracil (U) instead of thymine (T) 3.18B describe the stages of protein synthesis including transcription and translation, including the role of mRNA, ribosomes, tRNA, codons and anticodons 3.19 understand how genes exist in alternative forms called alleles which give rise to differences in inherited characteristics 3.20 understand the meaning of the terms: dominant, recessive, homozygous, heterozygous, phenotype, and genotype 3.21B understand the meaning of the term codominance 3.22 understand that most phenotypic features are the result of polygenic inheritance rather than single genes 3.23 describe patterns of monohybrid inheritance using a genetic diagram 3.24 understand how to interpret family pedigrees 3.25 predict probabilities of outcomes from monohybrid crosses 3.26 understand how the sex of a person is controlled by one pair of chromosomes, XX in a female and XY in a male 3.27 describe the determination of the sex of offspring at fertilisation, using a genetic diagram 3.28 understand how division of a diploid cell by mitosis produces two cells that contain identical sets of chromosomes 3.29 understand that mitosis occurs during growth, repair, cloning and asexual reproduction 3.30 understand how division of a cell by meiosis produces four cells, each with half the number of chromosomes, and that this results in the formation of genetically different haploid gametes 3.31 understand how random fertilisation produces genetic variation of offspring 3.32 know that in human cells the diploid number of chromosomes is 46 and the haploid number is 23 3.33 understand that variation within a species can be genetic, environmental, or a combination of both 3.34 understand that mutation is a rare, random change in genetic material that can be inherited 3.35B understand how a change in DNA can affect the phenotype by altering the sequence of amino acids in a protein 3.36B understand how most genetic mutations have no effect on the phenotype, some have a small effect and rarely do they have a significant effect 3.38 explain Darwin’s theory of evolution by natural selection 3.39 understand how resistance to antibiotics can increase in bacterial populations, and appreciate how such an increase can lead to infections being difficult to control
IGCSE Edexcel Biology (9-1) The organism in the environment
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) The organism in the environment

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: The organism in the environment 4.1 understand the terms population, community, habitat and ecosystem 4.2 practical: investigate the population size of an organism in two different areas using quadrats 4.3B understand the term biodiversity 4.4B practical: investigate the distribution of organisms in their habitats and measure biodiversity using quadrats 4.5 understand how abiotic and biotic factors affect the population size and distribution of organisms