Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1127k+Views

1931k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-catalysed reaction. The PowerPoint and accompanying resource are the last in a series of 4 lessons which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification but this lesson also covers point 3.2 [c] as competitive and non-competitive inhibitors are introduced and their differing effects on enzyme activity described and explained. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this allows students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors must have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Photosynthesis in the chloroplast (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Photosynthesis in the chloroplast (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the the overall reaction of photosynthesis that takes place in the grana and stroma of the chloroplast. The detailed PowerPoint and accompanying resources have been designed to cover points 5.1 & 5.5 in unit 4 of the Edexcel International A-level Biology specification and also describes the relationship between the structure and role of the chloroplast Students will have some knowledge of photosynthesis from iGCSE and were introduced to the ultrastructure of eukaryotic cells in topics 3 and 4 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled (or introduced) , a range of activities are used to ensure that key details are understood. As the main focus of the lesson is the reaction of photosynthesis, extra time is taken to introduce the details of the light-dependent and light-independent reactions that take place in the grana and stroma respectively. This includes descriptions of the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to GALP in the Calvin cycle of the light-independent reactions. Links to other related topics are also made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch (as originally covered in topic 1) As described above, this lesson has been specifically planned to prepare students for the upcoming lessons that cover the details of specification points 5.3 & 5.4 (i) and (ii).
Sclerenchyma, xylem and phloem (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Sclerenchyma, xylem and phloem (Edexcel Int. A-level Biology)

(0)
This lesson describes the similarities and differences between the structure, position and function of the xylem, phloem and the sclerenchyma fibres. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.5 in unit 2 of the Edexcel International A-level Biology specification. The lessons begins by challenging the students to identify the substances that a plant needs for the cellular reactions, where they are absorbed and where these reactions occur in a plant. The aim of this task is to get the students to recognise that water and mineral ions are absorbed in the roots and needed in the leaves whilst the products of photosynthesis are in the leaves and need to be used all over the plant. Students will be reminded that the xylem and phloem are part of the vascular system responsible for transporting these substances and then the rest of the lesson focuses on linking structure to function. A range of tasks which include discussion points, exam-style questions and quick quiz rounds are used to describe how lignification results in the xylem as a hollow tube of xylem cells to allow water to move as a complete column. They will also learn that the narrow diameter of this vessel allows capillary action to move water molecules up the sides of the vessel. The same process is used to enable students to understand how the structures of the companion cells allows assimilates to be loaded before being moved to the sieve tube elements through the plasmodesmata. The final part of the lesson introduces the sclerenchyma tissue as part of the vascular bundle and along with the structure and function, the students will observe where this tissue is found in the stem in comparison to the xylem and phloem. It is estimated that it will take in excess of 2 hours of A-level teaching time to cover the detail which has been written into this lesson
Adaptations of organisms (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Adaptations of organisms (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson provides examples of anatomical, behavioural and physiological adaptations of organisms to their environment. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.19 in unit 2 of the Edexcel International A-level Biology specification and also describes the concept of a niche and makes continual links to related topics such as natural selection A quick quiz competition at the start of the lesson introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy.
Stem cells and cell potency (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Stem cells and cell potency (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the meaning of the terms stem cell, pluripotency, totipotency, morula and blastocyst. The PowerPoint and accompanying worksheets have been designed to cover points 3.17 (i) and (ii) of the Edexcel International A-level Biology specification and contains discussions about the decisions that the scientific community have to make about the use of stem cells in medical therapies. The lesson begins with a knowledge recall of the structure of eukaryotic cells and the students have to use the first letters of each of the four answers to reveal the key term, stem cell. Time is then taken to consider the meaning of cellular differentiation, and this leads into the key idea that not all stem cells are equal when it comes to the number of cell types that they have the potential to differentiate into. A quick quiz round introduces the five degrees of potency, and then the students are challenged to use their understanding of terminology to place totipotency, pluripotency, multipotency, oligopotency and unipotency in the correct places on the potency continuum. Although the latter three do not have to be specifically known based on the content of specification point 3.17 (i), an understanding of their meaning was deemed helpful when planning the lesson as it should assist with the retention of knowledge about totipotency and pluripotency. These two highest degrees of potency are the main focus of the lesson, and key details are emphasised such as the ability of totipotent cells to differentiate into any extra-embroyonic cell, which the pluripotent cells are unable to do. The morula, and inner cell mass and trophoblast of the blastocyst are then introduced and used to demonstrate these differences in potency. The final part of the lesson discusses the decisions that the scientific community have to make about the use of embryonic stem cells, adult stem cells and also foetal stem cells which allows for a link to chorionic villus sampling from topic 2. There is also a Maths in a Biology context question included in the lesson (when introducing the morula) to ensure that students continue to be prepared for the numerous calculations that they will have to tackle in the terminal exams. This resource has been differentiated two ways to allow students of differing abilities to access the work
The PATHOGENS that cause communicable diseases (OCR A-level Biology)
GJHeducationGJHeducation

The PATHOGENS that cause communicable diseases (OCR A-level Biology)

(0)
This lesson describes the different types of pathogens that can cause communicable diseases in plants and animals. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (a) of the OCR A-level Biology specification but as this is the first lesson in module 4, it has been specifically planned to make links to upcoming topics such as phagocytosis, vaccinations and classification. viruses - HIV/AIDS, influenza, TMV bacteria - TB, cholera, ring rot protoctista - malaria fungi - athlete’s foot, black sigatoka, ringworm, The diseases shown above are covered by the detailed content of this lesson and the differing mechanisms of action of the four types of pathogens are discussed and considered throughout. For example, time is taken to describe how HIV uses a glycoprotein to attach to T helper cells whilst toxins released by bacteria damage the host tissue and the Plasmodium parasite is transmitted from one host to another by a vector to cause malaria. The accompanying worksheets contain a range of exam-style questions, including a mathematical calculation, and mark schemes are embedded into the PowerPoint to allow students to immediately assess their understanding.
The human nervous system (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

The human nervous system (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content as detailed in point 5.2.1 (The structure and function of the human nervous system) of the AQA GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (38 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how receptors, sensory neurones, the CNS, motor neurones and effectors are involved in the detection and response to a stimulus. Reflex reactions are also considered and discussed so that students can recognise how these automatic and rapid responses avoid damage and pain to humans. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like FROM NUMBERS 2 LETTERS and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the AQA GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the nervous system for their A level course before taking it to greater depths
The transmission of an action potential (CIE International A-level Biology)
GJHeducationGJHeducation

The transmission of an action potential (CIE International A-level Biology)

(0)
This is a highly detailed and engaging lesson that covers the detail of specification point 15.1 (e) of the CIE International A-level Biology specification which states that students should be able to describe and explain the transmission of an action potential in a myelinated neurone. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells. This lesson has been designed for students studying the CIE International A-level Biology course and ties in nicely with other uploaded lessons which cover the content of topic 15.1 (Control and coordination in mammals)
Measuring cells and units (CIE A-level Biology)
GJHeducationGJHeducation

Measuring cells and units (CIE A-level Biology)

(0)
This lesson describes how the eyepiece graticule and stage micrometer are used in the measurement of cells. The engaging PowerPoint and accompanying resources have been designed to cover point 1.1 [c] of the CIE A-level Biology specification and also includes a number of tasks that have been written to ensure that students are able to recognise the millimetre, micrometre and nanometre as units of size and that they are able to convert between them. As this content is part of topic 1.1, it is likely that this lesson on the measurement of cells and the units of size will be one of the first that students will encounter in this A-level course. With this in mind, this lesson and the next two on microscopes and calculating actual size have been specifically written to contain a wide variety of tasks, including an ongoing quiz competition. This will act to maintain engagement in a topic that can sometimes discourage students at this early stage of the course whilst ensuring that the key content is covered and understanding is constantly checked. A step by step guide walks them through the use of the scale on the stage micrometer to identify the size of the divisions of the eyepiece graticule and then they are challenged to apply this method to a series of questions. Useful hints are provided throughout the lesson and students will be able to confidently convert between metres, millimetres, micrometres and nanometres by the end of the lesson A quiz scoresheet is included with the lesson so that teachers can keep track of the points won in the different rounds and add them to those won in the upcoming lessons in topic 1.1
Structure of monosaccharides (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Structure of monosaccharides (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the relationship between the structure of monosaccharides and their roles in living organisms. The engaging PowerPoint and accompanying resources have been designed to cover the second part of points 1.2 & 1.4 of the Edexcel International A-level Biology specification and describes alpha-glucose, galactose, fructose, deoxyribose and ribose. The lesson begins by reminding students that monosaccharides are the simplest sugars and that these monomers provide energy. Using the molecular formula of glucose as a guide, students will be given the general formula for the monosaccharides and will learn that deoxyribose is an exception to the rule that the number of carbon and oxygen atoms are equal. Moving forwards, students have to study the displayed formula of glucose for two minutes without being able to note anything down before they are challenged to recreate what they saw in a test of their observational skills. At this point of the lesson, the idea of numbering the carbons is introduced so that the different glycosidic bonds can be understood in an upcoming lesson as well as the recognition of the different isomers of glucose. The difference between alpha and beta-glucose is provided but students do not need to consider the beta form until topic 4. The remainder of the lesson focuses on the roles of the monosaccharides and the final task involves a series of application questions where the students are challenged to suggest why ribose could be considered important for active transport and muscle contraction
Triglycerides, saturated & unsaturated lipids (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Triglycerides, saturated & unsaturated lipids (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes how a triglyceride is synthesised and describes the differences between saturated and unsaturated lipids. The engaging PowerPoint and accompanying resources have been designed to cover specification points 1.5 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and links are also made to related future topics such as the use of lipids as a substrate for respiration and the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in topic 1 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of lipids mean that these molecules have numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Cohesion-tension model (Edexcel A-level Biology B)
GJHeducationGJHeducation

Cohesion-tension model (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the cohesion-tension model explains the transport of water from the roots to the shoots. The detailed PowerPoint and accompanying resources have been designed to cover point 4.7 (iii) of the Edexcel A-level Biology B specification This lesson has been written to follow on from the end of the previous lesson, which finished with the description of the transport of the water and mineral ions from the endodermis to the xylem. Students are immediately challenged to use this knowledge to understand root pressure and the movement by mass flow down the pressure gradient. Moving forwards, time is taken to study the details of transpiration pull and then the main focus is the interaction between cohesion and tension. The role of adhesive forces in capillary action is also explained. Understanding is constantly checked through a range of tasks and prior knowledge checks are also written into the lesson to challenge the students to make links to previously covered topics such as the structure of the transport tissues.
The effect of concentration on enzyme activity (OCR A-level Biology)
GJHeducationGJHeducation

The effect of concentration on enzyme activity (OCR A-level Biology)

(0)
This fully-resourced lesson describes the effects of enzyme and substrate concentration on enzyme activity. The PowerPoint and accompanying resources are the third in a series of 3 lessons which cover the details of point 2.1.4 (d) [i] of the OCR A-level Biology A specification and students are also challenged on their recall of the details of transcription and translation as covered in module 2.1.3. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is attained and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will come to recognise that this availability is the result of enzyme synthesis and enzyme degradation and a SPOT THE ERRORS task is used to challenge their recall of protein synthesis. Please note that this lesson explains the Biology behind the effect of concentration on enzyme activity and not the methodology involved in carrying out such an investigation as this is covered in the lessons designed in line with point 2.1.4 (d) [ii]
Bacteriostatic & bactericidal antibiotics (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Bacteriostatic & bactericidal antibiotics (Pearson Edexcel A-level Biology A)

(0)
This fully-resourced lesson introduces bacteriostatic and bactericidal antibiotics and describes their differences, focusing on their modes of action. The engaging PowerPoint and accompanying resources have been designed to cover point 6.14 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also makes continual links to earlier lessons in topic 6 as well as related topics from the previous year such as protein synthesis from topic 2 The lesson begins by challenging the students to use their knowledge of the previous topic 6 lessons to identify the suffixes cidal and static. Students will learn that when the prefix is added, these form the full names of two types of antibiotics. Their understanding of terminology is tested further as they have to recognise that Polymyxin B is an example of a bactericidal antibiotic as its actions would result in the death of the bacterial cell. Tetracycline is used as the example of a bacteriostatic antibiotic and students will discover that its prevention of the binding of tRNA that inhibits protein synthesis and this reduction and stopping of growth and reproduction is synonymous with these drugs. Students are challenged on their knowledge of translation and will also be given time for a class discussion to understand that these antibiotics encourage the body’s immune system to overcome the pathogen in natural, active immunity. The final part of the lesson uses a quick quiz competition and a series of exam-style questions to ensure that students can recognise the different antibiotics from descriptions.
Antigens and autoimmune diseases (CIE A-level Biology)
GJHeducationGJHeducation

Antigens and autoimmune diseases (CIE A-level Biology)

(0)
This lesson describes self and non-self antigens and how a failure to distinguish between the two is the mechanism of autoimmune diseases. The PowerPoint and accompanying worksheets have been primarily designed to cover points 11.1 (d & f) of the CIE A-level Biology specification and describe examples of these diseases including myasthenia gravis, but this lesson can also be used to revise the content of the earlier topics as well as the previous lessons in topic 10 & 11 through the range of activities that are included The first part of the lesson focuses on the antigens and explains how the failure of the immune system cells to recognise these molecules on the outside of a cell or organism elicits an immune response. Moving forwards, the students are challenged to recognise diseases from descriptions and then to use the first letters of their names to form the term, autoimmune. In doing so, the students will discover that rheumatoid arthritis, ulcerative colitis, type I diabetes mellitus, multiple sclerosis and myasthenia gravis are all examples of autoimmune diseases. The next part of the lesson focuses on the mechanism of these diseases where the immune system cells do not recognise the antigens (self-antigens) on the outside of the healthy cells, and therefore treats them as foreign antigens, resulting in the production of autoantibodies against proteins on these healthy cells and tissues. Key details of the autoimmune diseases stated above and lupus are described and links to previously covered topics as well as to future topics such as the pancreas and nervous system are made. The students will be challenged by the numerous exam-style questions, all of which have mark schemes embedded into the PowerPoint to allow for immediate assessment of progress.
Penicillin (CIE A-level Biology)
GJHeducationGJHeducation

Penicillin (CIE A-level Biology)

(0)
This lesson outlines how penicillin acts on bacteria and why antibiotics do not affect viruses. The PowerPoint and accompanying resources have been designed to cover point 10.2 (a) of the CIE A-level Biology specification and also introduces the concept of bactericidal and bacteriostatic antibiotics, as illustrated by penicillin and tetracycline. The lesson begins with an engaging task, where the students have to identify the surnames of famous scientists from their descriptions to reveal the surname Fleming. This introduces Sir Alexander Fleming as the microbiologist who discovered penicillin in 1928. Time is taken to describe penicillin as a group of antibiotics that contain a beta-lactam ring in their molecular structure. Using this information and their knowledge of bacterial cell structure from topic 1, the students have to complete a passage describing how penicillin inhibits the formation of cross links in cell wall synthesis. A series of exam-style questions are then used to make links to the upcoming topic of antibiotic resistance. The next part of the lesson focuses on the differences between bactericidal and bacteriostatic antibiotics and the students will learn that penicillin is bactericidal as the weakening of the cell wall leads to lysis and death. Tetracycline is used as the example of a bacteriostatic antibiotic and students will discover that it is the prevention of the binding of tRNA that inhibits protein synthesis and that this reduction and prevention of growth and reproduction is synonymous with these antimicrobial agents. Students are challenged on their knowledge of translation and will also be given time for a class discussion to understand that these antibiotics work in tandem the body’s immune system to overcome the pathogen The final part of the lesson explains why antibiotics are ineffective against viruses.
Prokaryotic vs Eukaryotic cells (OCR A-level Biology)
GJHeducationGJHeducation

Prokaryotic vs Eukaryotic cells (OCR A-level Biology)

(0)
This fully-resourced lesson compares the structure and ultrastructure of a prokaryotic cell against an eukaryotic cell. The engaging PowerPoint and accompanying resources have been designed to cover specification point 2.1.1 (k) as detailed in the OCR A-level Biology A specification and describes how the size and cell structures differ as well as the additional features that are found in some prokaryotic cells and briefly introduces binary fission. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to come up with a 3-letter prefix that they believe will translate as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus which acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce so that students can recognise that these cells do not contain centrioles
Distribution in a habitat (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Distribution in a habitat (Edexcel Int. A-level Biology)

(0)
This lesson describes the meaning of ecological terms and explains how biotic and abiotic factors control the distribution of organisms in a habitat. The engaging PowerPoint and accompanying resources have been designed to cover points 5.11, 5.12 and 5.13 in unit 4 of the Edexcel International A-level Biology (Salters Nuffield) specification and therefore cover the biological definitions of ecosystem, community, population and habitat. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry distribution niche The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Links are made to photosynthesis and net primary productivity as these will be met later in topic 5 as well as challenging their prior knowledge of adaptations, heterozygosity index classification and biological molecules. The final part of the lesson uses an exam-style question to get the students to recognise that biotic and abiotic factors control the distribution of organisms in a habitat and to recall the concept of niche.
Transcription factors & the lac operon (OCR A-level Biology)
GJHeducationGJHeducation

Transcription factors & the lac operon (OCR A-level Biology)

(0)
This fully-resourced lesson describes the regulatory mechanisms that control gene expression at a transcriptional level. The detailed PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification which states that the students knowledge should include the lac operon and examples of transcription factors in eukaryotes. . This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in module 2.1.3, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.
Natural selection (CIE A-level Biology)
GJHeducationGJHeducation

Natural selection (CIE A-level Biology)

(0)
This engaging lesson uses the example of resistant bacteria and the modern-day giraffe to describe how natural selection occurs. The PowerPoint and accompanying resources have been designed to cover point 17.2 (a) of the CIE A-level Biology specification but also explains that genetic diversity is important for selection and therefore covers 17.1 (d) at the same time. President Trump’s error ridden speech about viruses antibiotics is used at the beginning of the lesson to remind students antibiotics are actually a treatment for bacterial infections. Moving forwards, 2 quick quiz competitions will initially introduce MRSA and then will show the students that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin. In doing so, they will see the principles of natural selection so they can be applied to different situations such as describing how the anatomy of the modern-day giraffe has evolved over time. The final part of the lesson introduces adaptations and convergent evolution and also links to the need for modern classification techniques which is covered later in topic 17.