A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This resource has been designed to motivate students whilst they evaluate their understanding of the content in modules 1, 2, 3 and 5 of the OCR A-level Biology A specification which can be assessed in PAPER 1 (Biological processes). The resource includes a detailed and engaging Powerpoint (149 slides) and is fully-resourced with differentiated worksheets that challenge the students on a wide range of topics.
The resource has been written to include different types of activities such as exam questions with explained answers, understanding checks and quiz competitions. The aim was to cover as much of the specification content as possible but the following topics have been given particular attention:
Monosaccharides, disaccharides and polysaccharides
Glycogen and starch as stores and providers of energy
The homeostatic control of blood glucose concentration
Osmoregulation
Lipids
Ultrafiltration and selective reabsorption
Diabetes mellitus
Voluntary and involuntary muscle
The autonomic control of heart rate
The organisation of the nervous system
The gross structure of the human heart
Haemoglobin and the Bohr shift
Bonding
The ultrastructure of plant cells
Cyclic vs non-cyclic photophosphorylation
Oxidative phosphorylation
Anaerobic respiration in eukaryotes
Helpful hints and tips are given throughout the resource to help students to structure their answers. This resource can be used in the lead up to the actual Paper 1 exam or earlier in the course when a particular area of modules 1, 2, 3 or 5 is being studied.
If you are happy with this resource, why not look at the one which has been designed for Paper 2 (Biological diversity)?
These 12 lessons cover points 15.1 (1, 3, 4, 5, 6, 7, 9, 10, 11 & 12) and 15.2 (1, 2 & 3) from topic 15 of CIE A-level biology specification (for assessment in 2025 - 27). This topic is titled control and coordination and concerns comparisons between the endocrine and nervous system in mammals, and then the key structure of the nervous system before looking at this control in plants.
Each lesson has been extensively planned and contains a wide range of engaging activities and tasks, interspersed with current and prior knowledge checks.
The sensory, motor & intermediate neurones and cholinergic synapses lessons have been shared for free, if you want to download first to get an idea for the quality of these lessons.
This detailed lesson describes the absorption of water, the movement through the root and the role of the endodermis. Both the PowerPoint and accompanying resource have been designed to cover specification points (j, k & l) in topic 3 of AS unit 2 of the WJEC A-level Biology specification and includes descriptions of the apoplast, symplast and vacuolar pathways and the Casparian strip.
The lesson begins by looking at the specialised features of the root hair cell so that students can understand how these epidermal cells absorb water and mineral ions from the soil. Moving forwards, students are introduced to key terminology such as epidermis and root cortex before time is taken to look at the different pathways that water and minerals use to transverse across the cortex. Discussion points are included throughout the lesson to encourage the students to think about each topic in depth and challenges them to think about important questions such as why the apoplast pathway is needed for the water carrying the ions. The main part of the lesson focuses on the role of the endodermis in the transport of the water and ions into the xylem. Students will be introduced to the Casparian strip and will learn how this layer of cells blocks the apoplast pathway. A step by step method using class questions and considered answers is used to guide them through the different steps and to support them when writing the detailed description.
This lesson has been written to tie in with the next lesson on the pathways and mechanisms by which water and mineral ions are transported to the leaves.
This clear and concise lesson looks at the calculation of cardiac output as the product of stroke volume and heart rate. This engaging PowerPoint and accompanying resource have both been designed to cover point 7.9 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to calculate cardiac output.
The lesson begins by challenging the students to recall that the left ventricle is the heart chamber with the thickest myocardial wall. This leads into the introduction of stroke volume as the volume of blood which is pumped out of the left ventricle each heart beat. A quick quiz game is used to introduce a normative value for the stroke volume and students are encouraged to discuss whether males or females would have higher values and to explain why. A second edition of this quiz reveals a normative value for resting heart rate and this results into the introduction of the equation to calculate cardiac output. A series of questions are used to challenge their ability to apply this equation and percentage change is involved as well. The final part of the lesson looks at the hypertrophy of cardiac muscle and students will look at how this increase in the size of cardiac muscle affects the three factors and will be challenged to explain why with reference to the cardiac cycle that was covered in an earlier topic.
An engaging lesson presentation (78 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module P4 (Waves and radioactivity) of the OCR Gateway A GCSE Combined Science specification.
The topics that are tested within the lesson include:
Waves and their properties
Wave velocity
Electromagnetic waves
Atoms and isotopes
Alpha, beta, gamma
Nuclear equations
Half-life
Radiation and the human body
Students will be engaged through the numerous activities including quiz rounds like “Tell EM the Word” and “Take the HOTSEAT” whilst crucially being able to recognise those areas which need further attention
This bundle of 17 lessons covers the majority of the content in Topic B6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Investigating distribution by sampling
Increasing biodiversity
Loss of biodiversity
Selective breeding
Genetic engineering
Producing a GMO
Health and disease
Communicable diseases
Stopping the spread of diseases
Plant diseases
The Human Body Defences
Blood clotting
Using vaccines In the prevention of disease
Antibiotics
Developing drugs
Non-communicable diseases
Treating cardiovascular diseases
Organ transplants
Stem cells in medicine
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This lesson describes the actions of the sympathetic and parasympathetic divisions of the ANS. The PowerPoint and accompanying resources are part of the 8th lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification.
The students were introduced to the autonomic nervous system (ANS) in the 1st lesson in this topic, so this lesson has been designed to deepen and further their understanding of the actions of this system. Students will come to understand that the sympathetic division is most active during times of stress whilst the parasympathetic division is most active during times of sleep and relaxation. Through a series of tasks including a fun quiz round, they will discover the actions of the two divisions and then be challenged to apply their understanding.
This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below:
#1 Organisation of the nervous system
#2 The structure and function of the cerebral lobes
#3 The cerebellum
#4 The structure and function of the sensory and motor neurones
#5 The relay neurones
#6 Synaptic transmission
#7 Excitation and inhibition at the synapse
#8 The autonomic nervous system
#9 The fight or flight response
#10 The somatic nervous system
#11 James-Lange theory of emotion
#12 James-Lange theory of emotion part 2
#13 Penfield’s study of the interpretative index
#14 Hebb’s theory of learning and neuronal growth
#15 An introduction to neuropsychology
#16 Brain scanning techniques
#17 Tulving’s gold memory study
This bundle contains 11 detailed lesson PowerPoints and the variety of tasks that are contained within these slides and the accompanying resources will engage and motivate the students whilst covering the following specification points within topic 1 of the Edexcel International A-level Biology specification:
The importance of water as a solvent in transport
The difference between monosaccharides, disaccharides and polysaccharides
The relationship between the structure and function of monosaccharides
The formation and breakdown of disaccharides
The relationship between the structure and function of glycogen, amylose and amylopectin
The synthesis of triglycerides
The differences between saturated and unsaturated lipids
The relationship between the structure of capillaries, arteries and veins and their functions
Atrial systole, ventricular systole and cardiac diastole as the three stages of the cardiac cycle
The operation of the mammalian heart and the major blood vessels
The role of haemoglobin in the transport of oxygen and carbon dioxide
The oxygen dissociation curve for foetal haemoglobin and during the Bohr effect
The course of events that lead to atherosclerosis
The blood clotting process
If you want to sample the quality of this bundle, then download the glycogen, amylose and amylopectin, cardiac cycle and blood clotting lessons as these have been uploaded for free
All 6 lessons included in this bundle have been written to cover the detailed content of topics 8.3 and 8.4 of the AQA A-level Biology specification. These topics can provide a series of problems for students so clear explanations are used throughout the lesson as well as regular understanding checks so any misconceptions are immediately addressed. The variety of tasks will maintain engagement whilst displayed mark schemes allow students to assess their answers and add detail where it is missing.
The following specification points are covered:
8.3: Using genome projects
8.4.1: Recombinant DNA technology
8.4.2: Differences in DNA between individuals of the same species can be exploited
8.4.3: Genetic fingerprinting
If you would like to sample the quality of the lessons first, why not download the lesson on producing DNA fragments which has been uploaded for free
This fully-resourced lesson has been designed to cover the content of specification point 5.2.2 (The brain) as found in topic 5 of the AQA GCSE Biology specification. This resource contains an engaging PowerPoint (33 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work.
The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as cancer.
The following content is covered in this lesson:
The functions of the cerebral cortex, medulla and cerebellum
Identification of the regions of the brain on an external and internal diagram
The early use of stroke victims to identify functions
The key details of the MRI scanning technique
The difficulties of diagnosing and treating brain disorders and disease
As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the functionality of the regions in more detail
An engaging lesson presentation (48 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C1 (Particles) of the OCR Gateway A GCSE Combined Science specification.
The topics that are tested within the lesson include:
Introducing particles
Chemical and physical changes
Atomic structure
Isotopes
Developing the atomic model
Students will be engaged through the numerous activities including quiz rounds like “SPOT the SCIENTIST” and “Order, Order” whilst crucially being able to recognise those areas which need further attention
This bundle of 8 engaging and motivating lesson presentations and associated worksheets have been designed to encourage students to assess their knowledge of the CHEMISTRY topics of the AQA GCSE Combined Science specification.
The lessons use a range of exam questions, quick tasks and quiz competitions to cover the content in the following topics:
Topic C1: Atomic structure and the periodic table
Topic C2: Bonding, structure and properties of matter
Topic C3: Quantitative chemistry
Topic C4: Chemical changes
Topic C5: Energy changes
Topic C6: The rate and extent of chemical change
Topic C7: Organic chemistry
Topic C8: Chemical analysis
An engaging lesson presentation (43 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P5 (Energy) of the OCR Gateway A GCSE Combined Science specification
The topics that are tested within the lesson include:
Conservation of energy
Efficiency
Energy transfer by heating
Mechanical energy transfers
Students will be engaged through the numerous activities including quiz rounds like “The TRANSFER market” whilst crucially being able to recognise those areas which need further attention
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module P1 (Matter) of the OCR Gateway A GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Describe how the atomic model has changed over time
Define density
Measure length, volume and mass to calculate density
Explain the differences in density between the different states of matter in terms of the arrangements of atoms and molecules
Describe how physical changes differ from chemical changes
Define the term specific heat capacity and distinguis between this term and specific latent heat
Carry out calculations to apply the equations involving specific heat capacity and specific latent heat
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This is an engaging and fully resourced REVISION lesson which uses a range of exam questions, understanding checks, quick differentiated tasks and quiz competitions to enable students to assess their understanding of the content within topic 4 (Atomic structure) of the AQA GCSE Physics (8463) specification.
The specification points that are covered in this revision lesson include:
Students should know that atoms are very small, having a radius of about 1 × 10-10 metres.
Students should know that the basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons
Students should be able to use the atomic number and mass number and understand how these differ in isotopes
Students should know the key stages in the development of the model of the atom and the main pieces of evidence that were found
Students should know that some atomic nuclei are unstable and that the nucleus gives out radiation as it changes to become more stable.
Students should know the penetrating and ionising power and range in air of the alpha particles, beta particles and gamma rays
Students should be able to represent decay with equations and be able to describe the effect on the atomic and mass number
Students should be able to determine the half-life of a radioactive isotope from given information.
Students should be able to describe nuclear fission and fusion
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “It’s as easy as ABG” where they have to compete to be the 1st to work out the word formed from the letters of the different types of radiation whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
This bundle of revision lessons have been designed to enable students to assess their knowledge and understanding of the content detailed in the Pearson Edexcel GCSE Physics specification and ultimately to recognise those areas which need extra attention before an end of topic test or mock or terminal exam.
Each lesson is fully-resourced and the engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with clearly explained answers and quick quiz competitions.
The following topics are covered by this bundle:
Topic 1: Key concepts in Physics
Topic 2: Motion and forces
Topic 3: Conservation of energy
Topic 4: Waves
Topic 5: Light and the EM spectrum
Topic 6: Radioactivity
Topic 7: Astronomy
Topic 8: Energy - forces doing work
Topic 9: Forces and their effects
Topic 10: Electricity and circuits
Topic 12: Magnetism and the motor effect
Topic 13: Electromagnetic induction
Topic 14: Particle model
Topic 15: Forces and matter
If you want to see the quality of these lessons, download the topics 4 & 5, 7, 10 and 12 & 13 lessons as these have been shared for free.
A detailed lesson presentation (37 slides) and associated worksheets that looks at the different pieces of evidence that scientists use to support evolution and discusses how these support the theory. The lesson begins by challenging students to decide which piece of evidence is the key piece in supporting evolution (fossils). Students will then have to arrange a number of statements to describe how a fossil is formed. Students are introduced to the fossil record and questions are used to check that they understand where the oldest fossils would be found. Moving forwards, students are given three pieces of evidence that would be observed in the fossil record and they are challenged to explain how each of these supports the theory of evolution. Quick competitions are then used to get the students to see some extinct organisms in the Dodo and Woolly Mammoth and again they are questioned on how extinct animals support the theory of evolution. Further evidence in rapid changes in species and molecular comparison is discussed. There are regular progress checks throughout the lesson so that students can assess their understanding and there is a set homework included.
The AQA specification states that a minimum of 10% of the marks across the 3 assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next!
Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”.
The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention:
Hardy-Weinberg equation
Chi-squared test
Calculating size
Converting between quantitative units
Standard deviation
Estimating populations of sessile and motile species
Percentages and percentage change
Cardiac output
Geometry
Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
This bundle contains 20 PowerPoint lessons, and all are highly-detailed and are fully-resourced with differentiated worksheets. Intricate planning means that the wide range of activities included in these lessons will engage and motivate the students, check on their current understanding and their ability to make links to previously covered topics and most importantly will deepen their understanding of the following specification points in topic 2 (Cells) of the AQA A-level Biology specification:
Structure and function of the organelles in eukaryotic cells
The specialised cells in complex, multicellular organisms
The structure of prokaryotic cells
The structure of viruses which are acellular and non-living
Measuring objects under an optical microscope
Use of the magnification formula
The principles of cell fractionation and ultracentrifugation
The behaviour of chromosomes during the stages of the cell cycle
Calculating the mitotic index
Uncontrolled cell division leads to the formation of tumours and cancer
Binary fission
The basic structure of cell membranes
The role of phospholipids, proteins, glycoproteins, glycolipids and cholesterol
Simple diffusion
Facilitated diffusion
Osmosis, explained in terms of water potential
The role of carrier proteins and the hydrolysis of ATP in active transport
Co-transport as illustrated by the absorption of sodium ions and glucose by the cells lining the mammalian ileum
Recognition of different cells by the immune system
The identification of pathogens from antigens
The phagocytosis of pathogens
The cellular response involving T lymphocytes
The humoral response involving the production of antibodies by plasma cells
The structure of an antibody
The roles of plasma cells and memory cells in the primary and secondary immune response
The use of vaccines to protect populations
The differences between active and passive immunity
The structure of the human immunodeficiency virus and its replication in helper T cells
Why antibiotics are ineffective against viruses
The use of antibodies in the ELISA test
If you would like to sample the quality of these lessons, then download the eukaryotic animal cells, viruses, osmosis, lymphocytes, HIV and AIDS lessons as these have been shared for free.
I have also uploaded lessons on optical microscopes and HIV and AIDS (for free) but neither are included in this bundle as the limit of 20 resources has been reached!
An engaging lesson presentation (16 slides) which looks at the surface area to volume ratio and ensures that students can explain why this factor is so important to the organisation of living organisms. This is a topic which is generally poorly misunderstood by students and therefore time has been taken to design an engaging lesson which highlights the key points in order to encourage greater understanding.
The lesson begins by showing students the dimensions of a cube and two answers and challenges them to work out what the questions were that produced these answers. Students are shown how to calculate the surface area and the volume of an object before it is explained how this can then be turned into a ratio. Time is taken at this point to ensure that students can apply this new-found knowledge as they have to work out which of the three organisms in the “SA: V OLYMPICS” would stand aloft the podium. Students are given the opportunity to draw conclusions from this task so that they can recognise that the larger the organism, the lower the surface area to volume ratio. The lesson finishes by explaining how larger organisms, like humans, have adapted in order to increase the surface area at important exchange surfaces in their bodies.
There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but is perfectly suitable for A-level students who want to look at this topic from a basic level