A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A quick, concise lesson presentation (15 slides) which together with a question worksheet focuses on ensuring that students can define an isotope and pick these substances out from a selection of substances. The lesson begins by looking at the number of sub-atomic particles in an aluminium atom so that students can recall what is shown by the atomic and mass numbers. This will enable students to calculate the number of protons, neutrons and electrons in three given isotopes and as a result, complete a definition of these substances. The remainder of this short lesson involves 4 application questions where students either have to recognise isotopes from a table or from a diagram and also are asked to write out the formula of an isotope. Ideally this lesson will be taught in conjunction with a lesson on atomic structure.
This lesson has been designed to help students to explain the relationship between current and resistance in thermistors and LDRs. This can be a topic which students do not engage with or understand well, so this lesson has tried to add engagement with useful tips to deepen their knowledge. A number of quick competitions are used to introduce key terms such as semiconductor and then the key points explained. Students are given an exemplary answer for the thermistor so they can see how their work should be set out when trying to explain the graph produced by a LDR. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding and any misconceptions can be addressed.
This lesson has been designed for GCSE students.
A fully-resourced lesson that looks at the details of the electrical topic of resistance that students need to know for GCSE. The lesson includes a lesson presentation (21 slides) and associated worksheets. The lesson begins by looking at the meaning of resistance and focuses on the connection between resistance and current. Moving forwards, net resistance in series and parallel circuits is introduced and explained.
This is a concise REVISION lesson that contains an engaging powerpoint (43 slides) and associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P8 (Space Physics) of the AQA 9-1 GCSE Physics specification.
The following sub-topics in the specification are covered in this lesson:
Our Solar System
The life cycle of a star
Natural satellites
Red-shift
This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
This is a concise, fast-paced lesson designed to cover the key terminology associated with the waves topic at GCSE and ensure that students are able to recognise and use these terms in context. A number of terms, such a transverse, are known by students but rarely correctly used in written descriptions. Therefore, through a range of tasks and quick competitions, students will meet these terms, learn how to define them and then be asked to apply their knowledge to understanding check questions. This lesson has been written in conjuction with the lesson titled “Wave velocity” and students are challenged to keep an A - Z of key terms during both lessons so they can challenge themselves during revision points.
This lesson has been designed to explore the range of energy sources which are used on Earth and specifically looks at why an increase in the use of renewable sources is critical for the future. The student’s scientific understanding is challenged at each step of the lesson but there is also a mathematical element running throughout. The lesson begins by challenging the students to predict which energy sources contributed the greatest % when presented with a pie chart. Students cover this topic in other subjects like Geography, so the lesson aims to build on this and consolidate the essential understanding. A range of renewable sources are discussed and key terms such as carbon-neutral taken on further.
This lesson has been designed for GCSE students but parts could be used with younger students who are looking at
A fast-paced lesson that looks at weight and how this differs on different planets depending upon the gravitational field strength. At the start of the lesson, the students are shown the equation to calculate gravity force and weight and are challenged to spot a difference (if there is one)! Time is then taken to explain how weight is the term used when a mass comes into the gravitational field of the Earth (or other planets). A quick understanding check, with the gravitational field strength Olympics, is used to see whether students can calculate this field and their mathematical skills are tested with a number of conversions needed to do so. Moving forwards, students are shown a number of masses and weights on the Earth and the Moon so they can see how mass does not change but weight will be different. The final task challenges them to apply their new-found knowledge to calculate their mass on the Earth, the Moon and Jupiter.
This lesson has been designed for GCSE students but it is suitable for KS3 students who are exploring the Universe topic.
This fully-resourced revision lesson challenges the students on their knowledge of the content detailed in topic 3 (Particle model of matter) of the AQA GCSE Physics specification. The wide range of activities which include exam questions with clear explanations will allow them to assess their understanding of the content and to recognise those areas which require further attention.
The lesson has been designed to cover as much of the topic as possible but the following specification points have been given particular attention:
Recall and apply the equation to calculate density
Explaining differences in density between states of matter
Internal energy and the result of heating the particles in a system
Applying the equation to calculate the specific heat capacity
Understanding that temperature does not change during changes of state
Applying the equation to calculate the specific latent heat
Explaining the qualitative relationship between the temperature of a gas and its pressure
Applying the equation that links pressure, volume and a constant
The engaging PowerPoint guides students on the use of key mathematical skills to aid success with the various calculations
This is a concise REVISION lesson that contains an engaging powerpoint (34 slides) and associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P7 (Magnetism and electromagnetism) of the AQA Trilogy 9-1 GCSE Combined Science specification. Generally, this is a topic which isn’t particularly well understood by students but is regularly assessed through questions in the GCSE exams and so time has been taken to design the lesson so that the key points are covered and common misconceptions addressed.
The following sub-topics in the specification are covered in this lesson:
Poles of a magnet
Magnetic fields
Electromagnetism
Fleming’s left hand rule
Electric motors
This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
This is a fun and engaging lesson that uses a range of quick competitions and tasks to ensure that the students recognisethe electrical symbols for the essential components and can describe the functions for each of these. Competitions such as SNAP and SAY WHAT YOU SEE will introduce the students to the components and their symbols. This lesson has been written for GCSE students and looks to build on what they should know from KS3 - however, it could be used with higher ability students at that level.
An informative lesson presentation (26 slides) that shows students how to convert between numbers and standard form (and the other way) so they are able to understand when these are used in Science questions. The lesson begins by guiding them through how to change numbers to standard form and explains when a power of 10 that is positive will be achieved and when it will be negative. Students are given the opportunity to see these used in a Science question and there is a cross-subject link as they are also required to convert between units. A number of competitions are used near the end of the lesson to maintain motivation and to allow the students to check their progress in a fun way
This lesson has been designed for GCSE students but is suitable for KS3
This lesson has been written to act as a revision tool for students at the completion of topic 2.1 of the WJEC GCSE Physics specification or in the lead up to mock or terminal exams. The engaging PowerPoint and accompanying resources have been designed to include a wide range of activities to allow the students to assess their understanding and to recognise any areas which need extra attention. This specification is heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units.
The following specification points have received a particular focus in this lesson:
Motion using speed, velocity and acceleration
Speed-time graphs
Application of the equations to calculate speed and acceleration
Using velocity-time graphs to calculate uniform acceleration and distance travelled
Knowledge of the terms reaction time, thinking distance, braking distance and stopping distance
The factors which affect these distances
A number of quick quiz rounds, such as THE WHOLE DISTANCE, are used to maintain engagement and motivation and to challenge the students on their recall of important points.
Alongside the “properties of waves” lesson, this lesson is also designed to be fast-paced with a focus on the key terminology of the waves topic as well as looking at the different calculations that can be carried out. It is written for GCSE students and challenges their mathematical skills throughout, by asking them to rearrange formulae, convert units and write in standard form. The lesson begins by recalling the definitions for wavelength, frequency and wave velocity and then introducing them to the equation that links them. The velocity of sound waves in three mediums is the initial focus, so that students can recognise that the velocity is higher in liquids and solids than in air. Moving forwards, the concept of an echo is discussed and again a calculation used to show them how distance could be worked out with the added extra of the final division by 2. There are progress checks such as these written throughout the lesson so that students have the opportunity to assess their understanding. A number of quick competitions are also included, in order to maintain engagement whilst check understanding in a different form.
This lesson has been written for GCSE students and aims to ensure that they can explain in detail why light changes direction due to refraction. The key to the explanation is the use of the correct terms in context so the start of the lesson challenges the students to come up with the key words of light, bend, normal, density and speed when given a range of clues. The next part of the lesson works with the students to bring these key terms together to form a definition of refraction. Moving forwards, the relationship between density of a medium and the speed of light through that medium is discussed so that there is a clear understanding of why light bends one way or the other. The next task uses the definition to apply to a practical situation to draw a diagram of light moving from air to glass. The final part of the lesson involves a range of practicals so this topic can be explored further.
A fast-paced lesson which includes an informative lesson presentation (20 slides) and a question worksheet. Together these resources guide GCSE students through the calculation questions that they can encounter on the topic of the conservation of momentum.
The lesson begins by introducing the law of the conservation of momentum and reminding students of the equation which links momentum, mass and velocity that they are expected to recall for the GCSE exam. Time is taken to inform them of the two types of question which tend to arise on this topic - those where the masses lock together during the event and those where they remain as separate masses. Students are guided through both of these types of questions with worked examples to enable them to visualise how to begin and set out their workings. Key mathematical skills are involved such as rearranging the formula so this is also shown. Students are given the opportunity to apply these skills to a series of questions on the worksheet and the mark schemes are displayed so they can assess once completed.
This engaging revision resource has been written with the sole aim of challenging students on their knowledge of both the Core and Supplement sections of TOPIC 2 of the Cambridge IGCSE Physics specification. The resource includes an engaging PowerPoint (68 slides) and accompanying worksheets, some of which are differentiated. The wide range of activities in the lesson which include exam questions with explained answers and quiz competitions will motivate the students whilst they evaluate and assess their knowledge of the content and recognise those areas which will require further attention.
The lesson has been designed to cover as many parts of the topic as possible, but the following sub-topics have been given a particular focus:
The properties of solids, liquids and gases
Conduction, convection and radiation
Melting and boiling points
Boiling vs evaporation
Specific latent heat
The structure and action of liquid-in-glass thermometers
The use of thermocouples
Specific heat capacity
The mathematical elements of the topic are covered throughout the lesson and students are given helpful hints to support them in structuring their answers. This resource can be used at the end of the topic or in the lead up to the mocks or the actual IGCSE terminal examinations.
An engaging lesson presentation that looks at how the amplitude and frequency of a sound wave can change. The lesson uses a range of sounds from recordings and challenges the students to draw the sound waves that would have been produced. In order to understand this topic, it is essential that the key terminology is understood and can be used in the correct context. Therefore, the start of the lesson focuses on wavelength and frequency and then longitudinal and challenges the students to recognise that these could all be related to sound waves. Moving forwards, students will hear a recording and then read a music “critique” that uses the key terminology so that can link the sounds to the change in shape of the waves. The final part of the lesson involves them drawing how the different sound waves would change from the control one.
This lesson has been designed for GCSE students.
A fast paced lesson which focuses on the equation for work done and using this in calculations. The lesson includes a student-led lesson presentation and a question worksheet which together explore the different problems that students can encounter when attempting these questions and therefore acts to eliminate any errors. There is a big mathematical element to the lesson which includes the need to rearrange formula, understand standard form and to convert between units as this is a common task in the latest exams. Students will learn that some questions involve the use of two equations as they are needed to move from a mass to a force (weight) before applying the work done equation. The last part of the lesson looks at how work done is involved in the calculation for power.
This lesson has been designed for GCSE students.
A concise lesson presentation (22 slides) and question worksheet, which together focus on the challenge of applying the equations of motion to calculation questions. Students are given this equation on the data sheet in the exam - therefore, this lesson shows them how they will be expected to rearrange in it four ways. For this reason, the start of the lesson revisits the skills involved in rearranging the formula, beginning with simple tasks and building up to those that involve indices as are found in this equation. Once students have practised these skills, they are challenged to answer 4 questions, although 1 is done together with the class to visualise how to set out the working.
This lesson has been designed for GCSE students
This is a concise REVISION lesson that contains an engaging powerpoint (28 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P15 (Forces and matter) of the Edexcel GCSE Combined Science specification.
The following sub-topics in the specification are covered in this lesson:
Describe the difference between elastic and inelastic distortion
Recall and use the equation for linear elastic distortion including calculating the spring constant
Use the equation to calculate the work done in stretching a spring
Describe the difference between linear and non-linear relationships between force and extension
Investigate the extension and work done when applying forces to a spring
This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams