A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module P6 (Radioactivity) of the OCR Gateway A GCSE Physics specification.
The sub-topics and specification points that are tested within the lesson include:
The atomic nuclei
Recognising and representing isotopes
Unstable nuclei and the emission of radiation
Writing balanced equations to represent radioactive decay
Explain the concept of half-life and carry out calculations to determine the half-life or time taken for decay
Recall the different penetrating powers of alpha, beta and gamma
Be able to describe the processes of nuclear fission and fusion
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This is a fully-resourced revision lesson that could be used over a series of lessons to help students to revise and assess their knowledge of the content that is found in topics P5 (Forces), P6 (Waves) and P7 (Magnetism and electromagnetism) of the AQA GCSE Combined Science specification and will be assessed in Paper 6
This revision lesson uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to cover the following sub-topics and specification points:
Scalar and vector quantities
Contact and non-contact forces
Gravity
Work done and energy transfer
Forces and elasticity
Speed
Velocity
Acceleration
Newton’s laws of motion
Momentum
Conservation of momentum
Transverse and longitudinal waves
Properties of waves
The EM waves
Fleming’s left-hand rule
This lesson contains a big emphasis on the mathematical calculations that will be involved in these exams, and as a result students are challenged to recall the equations and to apply them.
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams. A lot of the tasks have been differentiated so that students of all abilities can access the work and be challenged appropriately.
This is a fully-resourced revision lesson that could be used over a series of lessons to help students to revise and assess their knowledge of the content that is found in topics P1 (Energy), P2 (Electricity), P3 (Particle model of matter) and P4 (Atomic structure) of the AQA GCSE Combined Science specification and will be assessed on PAPER 5. This revision lesson uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to cover the following sub-topics and specification points:
Energy stores and systems
Changes in energy
Energy changes in systems
Standard circuit diagram symbols
Electrical charge and current
Current, resistance and potential difference
Series and parallel circuits
Power
Specific heat capacity
The structure of an atom
Mass number, atomic number and isotopes
The development of the model of the atom
Radioactive decay and nuclear radiation
Nuclear equations
Half-lives
This lesson contains a big emphasis on the mathematical calculations that will be involved in these exams, and as a result students are challenged to recall the equations and to apply them.
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams. A lot of the tasks have been differentiated so that students of all abilities can access the work and be challenged appropriately.
This is a fully-resourced revision lesson that could be used over a series of lessons to help students to revise and assess their knowledge of the content in topics P1 (Matter), P2 (Forces) and P3 (Electricity and magnetism) of the OCR Gateway A GCSE Combined Science specifiction which can be assessed in paper 5. This revision lesson uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to cover the following sub-topics and specification points:
Describe how and why the atomic model has changed over time
Describe the structure of the atom and the charges of the particles
Define the term specific latent heat
Conversions from non S.I. units to S.I. units
Explain the vector-scalar distinction
Recall examples in which objects interact
Represent forces as vectors by drawing free-body diagrams
Know the definition of Newton’s three laws of motion
Define momentum and describe examples of momentum in collisions
Recall and apply Newton’s third law
Describe the relationship between force and the extension of a spring
Calculate the spring constant in linear cases
Define mass and weight
Recall that current depends upon both potential difference and resistance
Recall and apply the relationship between I, R and V
Show that Fleming’s left hand rule represents the relative orientations of current, magnetic field and force
This lesson contains a big emphasis on the mathematical calculations that will be involved in these exams, and as a result students are challenged to recall the equations and to apply them.
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams. A lot of the tasks have been differentiated so that students of all abilities can access the work and be challenged appropriately.
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P3 (Particle model of matter) of the AQA Trilogy GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Density of materials
Changes of state
Temperature changes in a system and specific heat capacity
Changes of heat and specific latent heat
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Module P1 (Matter) of the OCR Gateway A GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Describe how the atomic model has changed over time
Define density
Measure length, volume and mass to calculate density
Explain the differences in density between the different states of matter in terms of the arrangements of atoms and molecules
Describe how physical changes differ from chemical changes
Define the term specific heat capacity and distinguis between this term and specific latent heat
Carry out calculations to apply the equations involving specific heat capacity and specific latent heat
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the sub-topics found within Topic P10 (Electricity and their circuits) of the Edexcel GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Draw and use electric circuit diagrams
Describe the difference between series and parallel circuits
Recall that an ammeter is set up in series and a voltmeter is set up in parallel
Explain that the electric current is the rate of flow of charge
Recall and use the equation connecting potential difference, current and resistance
Calculate the current, potential difference and resistance in series and parallel circuits
Describe power as the energy transferred per second and is measured in Watts
Describe the differences between alternating and direct current
Recall that mains electricity uses alternating current and has a frequency of 50Hz
Explain the difference between the function of the neutral and live wires
Explain the function of the earth wire and fuses in ensuring safety
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the sub-topics found within Topic P2 (Motion and forces) of the Edexcel GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Recall and use the equations to calculate average speed
Recall and use the equation to calculate acceleration
Use the equations of motion
Analyse velocity-time graphs to be able to compare and calculate accelerations and calculate the distance travelled from the area under the graph
Recall and use Newton’s second law involving force, mass and acceleration
Describe the relationship between the weight of a body and gravitational field strength
Define momentum, recall and use the equation
Describe examples of momentum in collisions
Recall that stopping distance is made up of the sum of the thinking distance and braking distance
Explain the factors that affect stopping distance
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This bundle of 12 lessons covers the majority of the content in Topic C3 (Physical chemistry) of the Edexcel iGCSE Chemistry specification. The sub-topics and specification points covered within these lessons include:
[a] Energetics
Know that chemical reactions can be endothermic or exothermic reactions
Calculate the heat energy change using the expression involving specific heat capacity
Draw energy level diagrams to represent endothermic and exothermic reactions
Use bond energies to calculate the enthalpy change
[b] Rates of reaction
Describe experiments to investigate the effect of changing surface area, concentration, temperature and the addition of a catalyst on the rate of reaction
Describe and explain the effects of changing surface area, concentration and temperature on a rate of reaction with reference to the collision theory
Know the definition of a catalyst and understand how it reduces the activation energy of a chemical reaction
Draw and explain reaction profile diagrams
[c] Reversible reactions and equilibria
Know that some reactions are reversible
Know the characteristics of a reaction at dynamic equilibrium
Know the effect of changing either the temperature of pressure on the position of the equilibrium
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 11 lessons covers the key details about electrical circuits that students need to know for their GCSE studies. It could also be used with younger students at KS3 who are studying this topic.
All aspects of the topic are covered such as series and parallel circuits, electrical current, resistance and potential difference and the components found in these circuits. In addition, there are lessons on plugs, mains electricity and the National Grid so that students can make links between these topics.
All of the lessons are detailed and engaging and students will contain regular progress checks so that students can assess their understanding
This is a fully-resourced lesson that looks at how pressure can be calculated using force and area and then explores how hydraulics are used to transmit a force through a fluid and challenges the students to apply the given equation to calculate the force or area. The lesson includes a lesson presentation (18 slides) and a question worksheet which has been differentiated two ways.
The lesson begins by challenging the students to use an answer to a calculation question to work out the equation that links pressure, force and area. A range of mathematical skills are tested throughout the lesson, such as converting between units and rearranging formula, and then the answers are fully explained so any student who was unable to move through the question can visualise the method. Moving forwards, students will be introduced to a hydraulics system and the equation which they will be given on the sheet in the exam. Students will use the equation to calculate the force or area at the second point of the system. This task has been differentiated so that students who find it difficult are still able to access the learning.
This lesson has been written for GCSE aged students
This bundle of 4 lesson presentations and associated resources cover a lot of the mathematical skills that can be tested in Science. Since the move to the new GCSE specifications, the mathematical element has increased significantly and these lessons act to guide students through these skills. Students are shown how to convert between units, rearrange to change the subject of the formula and to use significant figures and standard form.
This bundle of 3 lessons covers most of the content in sub-topic P6.1(Physics on the move) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include:
Everyday motion
Reaction time and thinking distance
Stopping distances
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a fully-resourced lesson that guides students through the range of calculations involved in calculating speeds in everyday situations. This lesson includes an informative lesson presentation (27 slides) and a question worksheet which has been differentiated two ways.
The lesson begins by showing the students a speed camera and challenging them to recall the equation that would be used to calculate the speed as well as asking them to explain where the distance and the time values would come from. This lesson has a high mathematical element to it, to run in line with the questions that were seen in the latest exams this summer. Students will be expected to convert between units and rearrange formula. In this example, students are challenged to convert between m/s and mph in order to determine which of three drivers will receive a speeding ticket for exceeding the limit. This task has been differentiated so that students who find the conversions difficult are given some assistance so they can still access the learning. Moving forwards, students will see how a sensor on a tyre of a bicycle can also be used to calculate the speed by working out the circumference of the tyre to determine the distance. The final part of the lesson gets students to convert between m/s and mph and the other way to find out some typical speeds of everyday motion such as walking, running or a train moving.
This lesson has been written for GCSE aged students but could be used with younger students of high ability who need an extra challenge in the calculating speed topic.
This is a fully-resourced lesson that looks at the role of transformers in the National Grid, explains why they increase or decrease potential difference and then uses the given equation to calculate potential difference or the number of turns on the primary or secondary coil. This lesson includes an informative lesson presentation (25 slides) and two question worksheets.
The lesson begins by introducing the devices that are transformers and showing the students that there are two types, step-up and step-down. Students will learn that step-up transformers increase the potential difference and step-down transformers decrease the potential difference. Moving forwards, a series of calculations are used to get the students to understand why these changes in potential difference occur. Students are guided through this section so that they are able to complete a summary passage about the roles of these devices. They will then be shown the equation connecting potential difference and number of turns which they do not need to recall but have to apply. Again, a worked example is used to visualise how workings should be set out before students are challenged to answer two sets of questions, the second of which involves the use of a second equation. Progress checks like these are found at regular intervals throughout the lesson so that students can assess their understanding.
This lesson has been written for GCSE students
This bundle of 6 lessons covers all of the content in the sub-topic P6.1 (Radioactive emissions) of the OCR Gateway A GCSE Physics specification. The topics covered within these lessons include:
Atoms and isotopes
The properties of alpha, beta and gamma radiation
Nuclear decay equations
Half-life
Background radiation
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 8 lessons covers a lot of the content in Topic P6 (Radioactivity) of the OCR Gateway A GCSE Physics specification. The topics covered within these lessons include:
Atoms and Isotopes
The properties of alpha, beta and gamma radiation
Nuclear equations
Half-life
Background radiation
Irradiation and contamination
Nuclear fission
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 9 lessons covers a lot of the content in Topic P8 (Global challenges) of the OCR Gateway A GCSE Physics specification. The topics and specification points covered within these lessons include:
Everyday motion
Reaction time and thinking distance
Braking distance and stopping distance
Energy sources
Using resources
The National Grid
Mains electricity
The Big Bang
Satellites and orbits
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 6 lessons covers the majority of the content in Topic P6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include:
Everyday motion
Explain methods of measuring human reaction times and recall typical results
Explain the factors which affect stopping distance
The main energy sources available on Earth
The differences between renewable and non-renewable energy sources
The use of transformers to increase and decrease potential difference
The National grid and mains electricity
The differences in function of the wires in a three core cable
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a fully-resourced lesson that explores the meaning of irradiation and contamination and challenges the students to make links to the different types of radiation in order to state which type of radiation is most dangerous outside of the body and inside the body. This lesson includes an engaging lesson presentation (28 slides) and a differentiated worksheet which gives assistance to those students who find the task of writing the letter difficult.
The lesson has been written to include real life examples to try to make the subject matter more relevant to the students. Therefore, whilst meeting the term contamination, they will briefly read about the incident with Alexander Litvinenko in 2006 to understand how the radiation entered the body. Moving forwards, students will learn that there are examples of consensual contamination such as the injection of an isotope to act as a tracer. At this point of the lesson, links are made to the topic of decay and half-lives and students are challenged to pick an appropriate isotope based on the half-life and then to write a letter to the patient explaining why they made their choice. The remainder of the lesson challenges students to decide which type or types of radiation are most dangerous when an individual is irradiated or contaminated and to explain their answers. This type of progress check can be found throughout the lesson along with a number of quick competitions which act to maintain engagement as well as introduce new terms.
This lesson has been written for GCSE aged students