524Uploads
220k+Views
119k+Downloads
All resources
Maths for engineering poster
Secondary classroom poster where your students can find out about the equations and formulae needed for engineering.
Download the single poster or order a full set of posters for free from the IET Education website.
Structural engineering
In this activity students will use case studies to investigate how architectural and building issues can be resolved.
It can accompany our Structural engineering starter and How to design a spaghetti roof structure activities as part of a series of activities that explores structural engineering.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Exploring how architectural and building issues can be resolved through real-life case studies
Students will view the design of the O2 arena by watching our Sound design video. They will also investigate the design of Stanstead Airport by viewing our structural engineering presentation. They will look specifically at the requirements of the buildings and the constraints in terms of structural design. They will also explore the design solutions used to overcome potential issues. This will form the stimulus for students to investigate structures in detail. The students will then be asked to explore possible solutions to a given structural design challenges.
Download our activity overview for a detailed lesson plan on structural engineering for free!
The engineering context
Iconic structures don’t just happen by accident. When designing large buildings, there will often be challenges that need problem solving such as eliminating columns for large open spaces. Engineers need structural knowledge to be able to create innovative designs that are safe, functional, and aesthetic.
Suggested learning outcomes
Students will learn how to identify the key features of structural components. They’ll also know how to identify the various pressures a structural element can undergo and then apply their knowledge of structure to design an effective solution to overcome specific issues.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
How to design a spaghetti roof structure
In this hands-on activity students are challenged with designing and engineering a spaghetti roof structure.
It should follow our Structural engineering starter and Structural engineering as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend a leaner’s basic knowledge of structures by providing a real-life context. It is not intended to form an introduction to structures.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Designing and engineering a spaghetti roof structure
In this fun activity, students will explore structural engineering principles by designing and building a strong, lightweight roof structure using spaghetti. The challenge comes from having to use the smallest amount of spaghetti and glue possible to keep the structure light and strong.
One their spaghetti roof is built, students must identify which areas are in tension and which are in compression so that they decide which parts of their structure need strengthening.
Download our activity overview for a detailed lesson plan on structural engineering and how to design a roof structure for free!
The engineering context
Virtually every building needs a roof. Sometime the function of the room can be simple, it just needs to be strong and light so that it doesn’t fall down. Other times, more ergonomic considerations need to be taken into consideration such as weatherproofing, aesthetics, acoustics, insulation and fire resistance.
Civil engineers must also be able to identify areas of tension and compression in existing structures, such as older buildings or in buildings that are having renovation work done, in order to be able to make recommendations for that will strengthen and support the existing structure.
Suggested learning outcomes
This lesson will teach students how to identify the key features of a structural component. They’ll learn how to identify the various pressures that a structural element can undergo and also be able to apply their knowledge to create solutions to given problems.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
Global surgery challenge
Investigate and understand the technology that is required for remote surgery
A session focused on Internet research and presentation skills. Students work in teams to investigate the technology that is required for remote surgery and discuss the advantages, disadvantages and ethical issues of such procedures.
Students are given the example of a patient who, after suffering a series of heart attacks is about to undergo heart surgery in a hospital where a new pacemaker will be inserted using remote surgery. They are responsible for reassuring the patient ‘Luigi’ about the procedure and the aftercare.
Download the free activity sheet!
And please do share your classroom learning highlights with us @IETeducation
Make a Robinson Anemometer
Making a device to measure wind speed
In this science project, students will construct a Robinson Anemometer using common household materials. Once built, students can use it to measure wind speed either inside with domestic items or outside with the natural environment.
This activity can serve as a stand-alone project or as a component of a broader unit on weather or measurement. It is intended for upper Key Stage 2 learners (years 5 and 6).
This resource is part of a collection of free STEM resources created to aid in the teaching of the primary national curriculum, especially in the areas of science and design and technology. The purpose of this activity is to aid in teaching key concepts through the construction of a homemade anemometer.
Parts and components required:
Polystyrene balls, 25 - 40 mm diameter, 1 per anemometer
Wood/bamboo skewers, 3 per anemometer
Putty (such as Blutack or Whitetak) OR modelling clay (such as clay, Plasticine or Playdough).
EITHER 6 paper cups OR 4 paper cups and a plastic water bottle with a sports cap
Sticky tape
Tools and equipment required:
Fans, hair-dryers or other sources of moving air
Stop watches
Commercial anemometer (for extension activity)
The Robinson Anemometer
The Robinson Anemometer is a type of cup anemometer, an instrument used for measuring wind speed. It was invented by John Thomas Romney Robinson in 1846 and is named after him. The Robinson Anemometer consists of four hemispherical cups mounted at the end of horizontal arms, which are attached to a vertical shaft. As the cups rotate due to the force of the wind, the speed of the wind can be calculated based on the rate of rotation. The Robinson Anemometer is still widely used today and is considered one of the most accurate and reliable types of anemometers.
The engineering context
Engineers need to be able to measure the forces that will act on the things they need to design. They need to understand how these measurements are made so that they can be confident that their designs will meet the requirements in practical situations.
Suggested learning outcomes
By the end of this activity students will have an understanding of what is meant by wind, they will be able to construct a simple mechanical device and they will be able to understand that the linear movement of air can be measured by the rotation of an anemometer.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Wind turbine calculations
Throughout this engaging activity designed for GCSE students, learners will face intriguing challenges that revolve around wind turbines, where their problem-solving skills will be tested using equations and systematic listing techniques.
By applying mathematical principles and systematic approaches, learners will uncover the secrets behind these sustainable energy marvels and gain a deeper appreciation for their significance in today’s world.
It is recommended to utilise a table format for displaying the values learners substitute into the equation, along with the corresponding outcomes, indicating whether they are too large or too small.
Problem Solving
Students will likely employ trial and improvement or a graphical method to tackle the first question. Some may also opt to utilise a spreadsheet for their calculations. To ensure the accuracy of their solutions up to two decimal places, they are encouraged to consider using a number line, which can aid in the verification process.
As for the final problem, students will need to adopt a systematic listing approach or explore other methodologies to ensure that every possible combination of gears has been thoroughly explored and tested.
This activity aims to empower students to approach challenges creatively and thoughtfully by providing various problem-solving techniques and strategies. This process will sharpen their mathematical abilities and cultivate critical thinking skills, enabling them to tackle complex problems with confidence and precision.
Discussion points
Promote active discussion among the students regarding the diverse approaches they have employed and how they can ensure the accuracy of their answers up to two decimal places. If students have not chosen the graphical approach to solve the problem, consider demonstrating it to the class.
Encourage a comparative analysis of the various methods used to address the subsequent problems and enquire about the students’ strategies to ensure they have explored all potential combinations of gears.
Potential GCSE content
This activity will cover using trial and improvement to solve an equation, calculations with fractions, ratios and systematic listing.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Structural engineering starter
In this activity students will investigate the design of roofs in terms of purpose and structure.
This activities accompanies our Structural engineering and How to design a spaghetti roof structure resources as part of a series of activities that explores structural engineering. The lesson has been designed to either reinforce or extend basic knowledge of structures to students by providing a real-life context. It is not intended to form an introduction to structures.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering.
Activity: Looking at the style and purpose of different roofs
This activity will introduce students to basic structural concepts by looking at the familiar context of roofs.
Students will start by viewing our Structural engineering starter presentation to discuss the purpose and different styles of roofs. They will next consider how their own roof might be structured. They will then be introduced to key terms relating to structural engineering such as tension, compression, structs and ties to give them context for subsequent engineering activities.
By working through our presentation, students will be asked to identify which structural members are in tension and compression.
Download our activity overview for a starter lesson plan on structural engineering for free!
The engineering context
Ingenious structural engineering has been responsible for many impressive roofs such as the O2 Arena, Stanstead Airport or Beijing National Stadium. Understanding roofs can be a gateway to appreciating the ingenuity behind larger structures like bridges, skyscrapers, and other structures that form our built environment.
Suggested learning outcomes
At the end of this lesson students will be able to identify the key features of a structural component. They’ll also know how to identify the various pressures a structural element can undergo. They will be able to apply their knowledge of structures to a given problem in order to design an effective solution.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan for free!
Please do share your highlights with us @IETeducation.
Design and make a cookie cutter
In this fun STEM teaching resource learners will discover how to create a 3D model of a basic shape in TinkerCAD and then print it using a 3D printer.
We’ve created this classroom design activity to support the delivery of key topics within design & technology (D&T) and engineering. This teaching resource activity is based on 3D printing and provides a straightforward, practical way to introduce this technology into the curriculum.
This activity introduces the concept of 3D CAD design and some of the basic tools used with CAD software. The software used for the CAD activity is the free and widely used TinkerCAD; however, this could easily be substituted for any other 3D CAD software already available in school.
The activity involves designing a basic shaped cookie cutter, then printing it out using a 3D printer. The guidance given for the printer is generic and may need to be varied depending upon the specific model(s) available in school.
This could be used as a main lesson activity to introduce basic CAD drawing skills or 3D printing. It could also be used as the basis for an integrated scheme of work, where learners subsequently use their cookie cutters to make biscuits, allowing integration with maths (measuring out ingredients) and food technology skills.
Tools/supplies needed:
Computer with TinkerCAD
3D Printer
PLA filament of an appropriate diameter for the equipment available
Optional (for starter): examples of plastic cookie cutters
Follow our step-by-step guide on how to design and make a cookie cutter
Learners will design and make a cookie cutter using CAD and 3D printing.
The engineering context
CAD is a versatile tool used by engineers across various disciplines to conceptualise, design, analyse, and document complex systems and structures. For example, engineers use CAD to design cars and buildings and to carry out virtual testing of aircraft wings.
3D printing is an area of huge growth, with applications ranging from small plastic parts to printing metal bridges in place over rivers!
Suggested learning outcomes
This resource combines design and technology with engineering with the aim that the learners will be able to develop skills in CAD and be able to 3D print a design idea successfully.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Testing fitness levels
In this activity students will learn about hypotheses by looking at heart rate data and how the use of computer games affects fitness.
This lesson follows our Wii Fitness activity, which provides students with an opportunity to collect fitness data which they can use as evidence to debate whether people should be encouraged to engage in computer-based sport activities.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and science.
Activity: Making hypotheses on how the use of computer games affects fitness
In this activity students will review their results from our Wii Fitness investigation to form a hypothesis on how different activities affect heart rates. Students must consider the validity and size of the data set collected and work through a series of questions to explore if the data is sufficient to confirm their initial hypotheses.
Download our activity overview for a starter lesson plan on hypotheses for free!
The engineering context
Engineering often involves problem-solving, and hypothesis based on initial observations can help engineers quickly define the potential cause of a problem. Hypothesis helps engineers to interpret data and can even guide them towards designing tests to make sure that the correct data is being gathered. This systematic approach can help to quickly validate or refute hypothesis, allowing engineers to find the right solution for the problem at hand.
Suggested learning outcomes
Students will be introduced to hypotheses and know how to create one from using a data set. They’ll also be able to evaluate the suitability and validity of the data collected as well as explain how results and ideas can be changed when we consider other variables.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
You can download our classroom lesson plan below.
Please do share your highlights with us @IETeducation.
History of flight
Make a hanging-mobile timeline of the history of flight.
In this engaging activity, learners will produce a timeline for the history of crewed flight. Rather than the conventional linear timeline, this version is presented as a hanging mobile.
They will carry out research to identify the important technological advances and dates, then use this to create the images hung on the mobile.
This could be used as a one-off main lesson activity to develop understanding that products and technologies change over time, or to build knowledge and understanding of flight.
You will need:
Access to internet or other appropriate research facilities
Card
Pencil & pens
Scissors
Sticky tape
Cotton or string
Coat hanger
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Build a car that moves
Learn how to make the base of a moving vehicle from card
Build a car with axles that moves! Budding inventors engineer the base and body for a model car made from card with wheels and axles. This is a fun practical activity for participants to make a simple 3D shape from a 2D net. The KS1 DT activity then introduces axles and wheels to enable the car to move.
Activity info, teachers’ notes and curriculum links
In this activity, pupils will make the base of a moving vehicle to understand how cars are designed and how axles work to allow cars to move.
Download the free resources!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Tools/resources required
Copies of the car base handout, printed on card, 1 per pupil (plus spares)
Axles, 2 per pupil – for example, wooden skewers
Plastic tubing – this can be short sections cut from drinking straws
Wheels, 4 per pupil
Scissors
Glue sticks
Optional:
Sticky tape or double-sided sticky tape
Hole punches (ideally single hole punches)
Coloured pencils
Pre-made model of the base, for demonstration (this could be made large size, for example by printing out on A3 card)
Download the activity sheets for free!
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales
And please do share your classroom learning highlights with us @IETeducation
Design and make a prayer mat for Ramadan
Using our KS2 lesson plan and template, learners will design and make their own prayer mat for Ramadan using string, wool and colouring pencils while nurturing an understanding of the religious festival of Ramadan
In 2024 Ramadan starts on Sunday 10 March and ends on Monday 8 April. It is estimated that globally 1.6 billion Muslims will take part in Ramadan and will fast from sunrise to sunset for one lunar month.
In this lesson activity learners will look at what Ramadan is, what happens during Ramadan and what is important to Muslims during Ramadan. They will look at existing prayer mats and design a prayer mat using a provided template suitable for the KS2 level.
We’ve created this design activity to support the teaching of key topics within design & technology (D&T), religious studies and art.
This could be used as a one-off lesson activity to develop designing and sketching skills or an understanding of Ramadan. Alternatively, it could be used as a part of a wider scheme of work to develop designing and modelling skills in design & technology and engineering.
Tools/supplies needed:
Paper and card
Drawing implements: colouring pencils or pens, pencils and rulers
Scissors
Optional, if available – examples of actual prayer mats
For extension activities: glue sticks, string, wool, selection of materials
The Engineering context
All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients.
Suggested learning outcomes
It is important for learners to understand all types of religious festivals as part of their religious education. This resource combines religious education with art and design and technology with the aim that the learners will be able to generate, develop, model and communicate their ideas through discussion, annotated sketches and pattern pieces.
Specifically, children will learn the main considerations and features for designing a prayer mat for Ramadan and be able to design a prayer mat that reflects Ramadan using shapes and patterns.
Download our activity sheet and other teaching resources for free
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Core maths for designers poster
Secondary classroom poster where your students can learn about the core maths principles and equations essential in design.
Download the single poster or order a full poster set for free from the IET Education website.
Investigate the James Webb Space Telescope
Examine the materials used on the James Webb Space Telescope in this free activity.
In this engaging STEM activity for KS3, we will delve into the groundbreaking technologies used in the construction of the James Webb Space Telescope (JWST), one of humanity’s most impressive space observatories.
As budding engineers, students will have the unique opportunity to investigate the engineered materials that make the JWST a marvel of modern engineering. Get ready to uncover the secrets behind the telescope’s incredible capabilities, discover the innovative materials that withstand the harsh conditions of space, and gain a deeper understanding of how scientific ingenuity allows us to peer into the universe’s farthest reaches.
Activity: Investigate the James Webb Space Telescope
In this activity, students will investigate an engineered material and share the results of their research with the class. This unit has a predominantly design & technology, and engineering focus, although it could be used in science. It could also be used as a main lesson or a research activity to develop an understanding of materials and their properties.
What is the James Webb Space Telescope?
The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy.
Suggested learning outcomes
By the end of this activity, students will be able to understand that materials can be selected for specific characteristics and purposes, they will be able to identify the properties of materials required for a particular function, and they will be able to explore a range of engineered materials, understanding why they are used.
The engineering context
The materials students will examine are used in the JWST or aerospace applications.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Property of rocks
Following this lesson plan, students will be able to identify the bedrock on which their town is built using a geological survey map. They’ll also investigate the properties of different types of rocks and interpret data on rock hardness and drilling capabilities.
The activity also encourages leaners to consider the implications of large-scale tunnelling and boring work on the bedrock of their town. It’s not just about understanding the science behind it, but also about appreciating its impact on their everyday lives.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). It can also be used to support geography lesson teaching.
Activity: Looking at the link between sewage and the underground tunnel system
In this activity, your students will play the roles of investigators for a local water company. They’ll be asked to examine the feasibility of digging a tunnel underneath their town to alleviate strain on the current sewage system.
The engineering context
In civil engineering, knowledge of geology is essential when designing and constructing infrastructure such as buildings, bridges, tunnels, and roads. The type of soil and bedrock, the presence of groundwater, the risk of earthquakes or landslides - all these factors can greatly influence the feasibility, design, safety, and cost of construction projects.
By investigating the feasibility of constructing a sewage tunnel, students will gain insights into the practical applications of their geography, science and math lessons. They’ll see first hand how engineers use their knowledge of rocks and their properties to make decisions that impact entire communities.
Suggested learning outcomes
The goal of this lesson plan is not only to teach your students about the properties of rocks but also to inspire them to think critically about how these properties affect our world. By the end of this activity, they’ll have a deeper understanding of their town’s geological makeup and the implications of drilling through the bedrock. They’ll also be able to interpret data on rock hardness and drilling capabilities, which are crucial skills in many STEM fields.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the film), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our classroom lesson plan.
Please do share your highlights with us @IETeducation.
Inputs and outputs of design
Developing an understanding of the terms ‘system’, ‘input’, ‘process’, ‘output’ and ‘signal’
This activity aims to develop students’ understanding of key terms such as ‘system’, ‘input’, ‘process’, ‘output’, and ‘signal’, fostering critical thinking and independent investigation skills.
Our ‘Time for a Game’ scheme of work offers an engaging electronics context, allowing students to delve into infrared technologies as seen in popular devices like the Nintendo Wii.
This lesson plan helps leaners understand the core components that make up the devices they use every day. By learning about systems, inputs, processes, outputs, and signals, they will begin to see the world around them in a new light.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design and technology (DT).
Activity: Developing an understanding of the terms ‘system’, ‘input’, ‘process’, ‘output’ and ‘signal’
In this activity, students will work in pairs to define key terms and identify these features in common products using the ‘Inputs and Outputs of Design’ presentation.
They will explore the concept of a system as a collection of parts designed to carry out a function, and learn how inputs activate the system, while outputs are activated by the process. They will also delve into the role of signals in transmitting information between different system blocks. To reinforce this learning, the Wii film will provide a practical example of these concepts at work.
The engineering context
This lesson plan provides an engaging introduction to engineering principles, as students learn about the components that make up the systems around them. Understanding the inputs, processes, outputs, and signals of a system is foundational to engineering and design. This activity will inspire students to consider a career in engineering, as they gain insights into the creativity, critical thinking, and problem-solving involved in designing and understanding complex systems.
Suggested learning outcomes
Upon completion of this activity, students will have a clear understanding of the difference between input, process, and output in a system and be able to define these terms. They’ll be able to identify these features in common products, enhancing their understanding of the devices and technologies they interact with daily.
Download our activity sheet for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation
How to draw a plan view in maths
Producing a plan view will help children to develop drawing skills, while also introducing concepts such as dimensions, proportion, and scale. All through our fun, hand-on maths activity!
Different types of drawing are used to communicate different types of information. Plan views see a section of an object as projected on a horizontal plane. In effect, a plan view is a 2D section drawing viewed from the top – this is different from a top view, which would see all of the features looking down from above. In the case of a room, for example, a plan view may show tabletops, chairs, doors etc., whereas a top view would also show the legs of the tables, light fittings etc.
Plan views are widely used to show rooms or buildings from above. They may include measurements, furniture, appliances, or anything else necessary to the purpose of the plan. Plan views may be used to see how furniture will fit in a room, for example when designing a new kitchen, to show the builders the layout of a new building, or on estate agent’s literature to give potential buyers an indication of what a house is like.
The lesson will help learners pick up an understanding of the practical uses of these drawings, from planning the layout of a room to presenting quite complex information about buildings.
This is one of a set of resources developed to support the teaching of the primary national curriculum, particularly key stage two (KS2). It has been designed to support the delivery of key topics within maths and design and technology (DT). This could be used as a one-off activity, an extension to maths learning on scale, or linked to other school activities, such as preparing a map for parents evening.
The engineering context
Designers, engineers, and architects need to be able to communicate the details and features of rooms or products to other engineers, manufacturers, and users. This can include sizes, assembly instructions and layouts. Drawings are typically one of the main methods used for explaining this information – they can be found in every area of engineering and manufacturing.
Suggested learning outcomes
Children will learn about the purpose of a plan view drawing and be able to create one for themselves. They will also learn how to use dimensions and scale when drawing.
Download our activity sheet and related teaching resources
All activity worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
And please do share your classroom learning highlights with us @IETeducation.
Rocket countdown maths game
Practice counting backwards from 50 in this fun rocket countdown maths game for KS1!
In this engaging maths game, students will learn to countdown backwards using different steps, i.e. 1s, 2s, 3s, 5s and 10s. This resource will prepare learners to count to and across to 50, forwards and backwards, beginning with zero or from any given number. Learners will release balloon ‘rockets’ to enhance engagement when each countdown reaches zero.
This activity could be used as a main lesson to teach learners how to count backwards using the prompts in the teacher presentation below.
Activity: Racket countdown maths game
This activity is one of a set of resources developed with the theme of the James Webb Space Telescope (JWST) to support the teaching of the primary national curriculum. These resources are designed to support the delivery of key topics within maths and science. This resource focuses on numbers and the ability to count backwards to zero using different number intervals.
What is the James Webb Space Telescope?
The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy.
The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come.
Suggested learning outcomes
By the end of this activity, students will be able to count backwards from numbers up to 50, and they will be able to count backwards in steps of 1s, 2s, 3s, 5s and 10s.
The engineering context
A grasp of number combinations and mathematical operations is essential for engineers solving various intriguing challenges. For instance, electronic engineers use countdown timers to inform drivers about the transition of a traffic light from red to green, ensuring a safe departure for motorists.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Discover mass, volume and density
In this exciting STEM activity, you will be given a variety of objects made from different materials. You will weigh each object and then measure its volume by immersing it in water. You will then use this information to calculate the density of each object.
Activity to discover mass, volume and density
This activity could be used as a main lesson to teach learners how to collect data through measurement and use number skills in a practical context. It could also be used as one of several activities within a wider scheme of learning, focusing on using maths and science to understand the properties of materials.
How do you calculate density?
Density = Mass / Volume
What is the James Webb Space Telescope?
The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy.
The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come.
Suggested learning outcomes
By the end of this activity, students will be able to compare materials based on their density, and they will be able to measure the volume of water and the weight of an object. Students will also learn how to calculate density, and they will be able to communicate measurements using appropriate SI units.
The engineering context
Space Engineers must have a good understanding of density when they load cargo onto a spacecraft. They need to know the density of the materials they are loading to ensure the rockets have enough power to allow the spacecraft to lift off.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Iterative design poster
Primary classroom poster exploring the process involved in iterative design.
To order your completely free posted pack, please visit the IET Education website.