Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Practice calculating percentage yield with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Practice calculating the percentage by mass of an element in a compound with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Practice calculating number of moles, relative formula mass and mass with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Includes testing for:
Cations
Anions
Gas tests
Test for Water
Testing for Purity of Water
Flame Tests
Question on one side, answer on the other.
Print double sided (flip along long side of paper).
This resource bundle offers six meticulously crafted lessons to help students excel in quantitative chemistry. Designed for secondary school learners, it provides clear explanations, practical examples, and interactive activities, making it ideal for teaching, independent study, or revision.
What’s Included:
Conservation of Mass:
Explore how mass remains unchanged during chemical reactions. Practical examples and engaging exercises ensure students grasp this core principle.
Ar, Mr, and Calculating Percentage Mass of an Element in a Compound:
Learn to calculate relative atomic mass (Ar) and molecular mass (Mr), and determine the percentage composition of elements within compounds.
The Mole and Calculations Involving Mass, Moles, and Molar Mass:
Simplify the concept of the mole with worked examples that show how to calculate the mass, number of moles, and Ar/Mr, supported by ample practice questions.
Reacting Masses in Equations:
Use balanced chemical equations to determine the masses of reactants and products, connecting theory with real-world applications.
Counting Atoms, Writing, and Balancing Equations:
Help students confidently write and balance chemical equations while understanding the role of coefficients and subscripts in counting atoms.
Concentration of Solutions:
Dive into solution chemistry with lessons on calculating concentration, mass, and volume, supported by examples and real-life contexts like dilutions and mixing solutions.
Why Choose This Bundle?
Each lesson includes starter activities, exam-style questions, and step-by-step worked examples.
Topics are aligned with GCSE chemistry curricula, ensuring comprehensive coverage of key quantitative skills.
Flexible usage: Perfect for guided teaching, revision sessions, or targeted intervention.
File Type: PowerPoint (.pptx)
Updated: December 2024 – New lessons on concentration and balancing equations have been added.
Equip your students with the tools they need to confidently tackle quantitative chemistry and achieve success in their exams and beyond!
Lesson 1 Counting Atoms, Writing Equations and Balancing Equations
Lesson 2 - Conservation of Mass
Lesson 3 - Ar, Mr and Calculating % Mass of an Element in a Compound
Lesson 4 - The Mole and Calculating Number of Moles, Mass or Ar/Mr
Lesson 5 - Reacting Masses in Equations
Lesson 6 - Concentration of Solutions
PowerPoint that covers the following learning objectives:
Measure the temperature of a substance.
Plot a graph of temperature vs. time.
In this investigation, students will compare how a large beaker of hot water and a small beaker of hot water cool down differently. They will form a research question, hypothesis, fill in table of results, plot line graphs and form a conclusion.
PowerPoint includes research question, hypothesis, method, graphs and conclusion.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
This PowerPoint presentation is a comprehensive tool designed to teach secondary school students how to calculate reacting masses in chemical equations. It provides a step-by-step approach to balancing equations, understanding mole ratios, and using these concepts to determine the masses of reactants and products in a reaction.
The resource begins with learning objectives, including calculating masses from balanced equations and understanding the relationships between moles, mass, and relative atomic/molecular masses. Starter activities engage students with questions about moles, Avogadro’s constant, and mole-mass calculations to set the foundation for the lesson.
Key topics covered include:
Balancing Equations: Students learn to identify the number of atoms in a chemical formula and practice balancing equations to establish the stoichiometric relationships required for mass calculations.
Using Mole Ratios: Clear examples demonstrate how to interpret balanced equations to understand the relationships between reactants and products, expressed in moles.
Mass Calculations: Practical examples, such as calculating the mass of hydrogen gas produced from sodium reacting with water, guide students through each step of the process. Worked examples include real-world applications and exam-style questions.
Interactive tasks and practice questions are included throughout the presentation. Examples cover a variety of reactions, such as thermal decomposition, neutralization, and displacement reactions, ensuring students gain a broad understanding of the topic. Answers are provided to support independent learning and revision.
This PowerPoint file (.pptx) is aligned with curriculum standards. It is an ideal resource for teachers aiming to deliver engaging lessons on reacting masses in chemical equations, equipping students with essential problem-solving skills in chemistry.
This comprehensive PowerPoint presentation, is an engaging teaching resource designed for chemistry students to master the concept of the mole. The lesson begins with a clear definition of what a mole represents in chemistry and its importance for understanding substances at the atomic level. Using Avogadro’s constant, students will explore the numerical value of a mole (6.02 x 10²³) and its real-world applications.
The resource includes visually appealing slides, interactive starter activities, and step-by-step problem-solving examples to reinforce key learning objectives. Activities challenge students to calculate moles, mass, and the relative atomic or formula mass of elements and compounds. Exercises range from balancing equations to solving mole problems of varying difficulty, catering to learners at different levels.
Additionally, the presentation integrates external resources like the educational video “Just How Small Is an Atom?” to enhance understanding. The included questions are fully solved, offering both guided practice and self-assessment opportunities.
This resource is ideal for classroom instruction or independent study. It is suitable for GCSE-level students or equivalent and aligns with chemistry curriculum standards. The file format is a PowerPoint (.pptx), ensuring compatibility with most educational devices and software. Perfect for teachers seeking a dynamic way to explain the mole concept and for students aiming to strengthen their foundational chemistry knowledge.
PowerPoint that covers the following learning objectives:
Define the mass of an object.
Measure mass of an object using a mass balance.
Includes questions, pictures, instructions and a practical in which the students have to use mass balances to measure the mass of up to 20 objects.
There are questions that ask students to add masses of objects together, substract masses and work out the difference.
The results table, questions and space for answers are on the worksheet.
This is for a primary/early secondary class.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
This detailed PowerPoint presentation, is an essential resource for chemistry students to master core concepts. The lesson is structured to help learners define and apply relative atomic mass (Ar) and relative formula mass (Mr), utilizing the periodic table effectively. Students will also learn to calculate the percentage mass of elements within compounds, making it a versatile tool for foundational chemistry education.
Key learning objectives include:
Defining Ar and Mr.
Identifying atomic and mass numbers using the periodic table.
Calculating relative formula masses of compounds, even those with brackets.
Determining the percentage mass of elements in chemical compounds.
The presentation includes engaging starter activities, such as balancing equations and calculating subatomic particles for elements, followed by detailed explanations and worked examples. For instance, students will calculate the percentage mass of hydrogen in water (H₂O) and oxygen in glucose (C₆H₁₂O₆), reinforcing real-world applications.
Designed for GCSE-level chemistry or equivalent, this resource provides practice questions with answers, ranging from simple calculations to more complex problems involving multiple atoms. It ensures a step-by-step understanding of concepts and offers a robust platform for both classroom instruction and independent study.
The file format is PowerPoint (.pptx), compatible with most educational devices. This update includes enhanced examples and refined content for greater clarity and engagement. Perfect for educators aiming to deliver dynamic lessons and for students striving to excel in chemistry.
This interactive PowerPoint presentation, provides a thorough introduction to the law of conservation of mass for chemistry students. Designed for GCSE-level learners or equivalent, the resource explains the principle that mass is neither created nor destroyed in chemical reactions, using both theoretical concepts and practical activities to engage students.
Key learning objectives include:
Defining the conservation of mass.
Observing changes in mass during chemical reactions.
Explaining changes in mass in non-enclosed systems using the particle model.
The lesson begins with an engaging starter activity involving counting atoms in a reaction to emphasize the rearrangement of atoms during chemical processes. The resource incorporates clear explanations, worked examples, and real-life scenarios, such as burning carbon or reacting calcium carbonate with hydrochloric acid, to illustrate the concept.
A hands-on experiment is included, allowing students to measure and analyze changes in mass when calcium carbonate reacts with hydrochloric acid. Detailed safety instructions, method steps, and example data are provided to ensure a safe and effective lab experience. The resource concludes with a range of practice questions, including calculations and conceptual problems, with answers for self-assessment.
This resource features enhanced explanations, updated examples, and clear instructions to improve learning outcomes. It is provided in a PowerPoint (.pptx) format, ensuring compatibility with most educational devices and software. Perfect for teachers seeking a comprehensive and interactive way to teach conservation of mass and for students aiming to solidify their understanding of fundamental chemistry concepts.
This PowerPoint resource is a comprehensive teaching tool for exploring key aspects of chemical reactions. It is designed to support student understanding of atom counting in chemical formulas (including those with brackets), writing word and symbol equations, and balancing chemical equations accurately.
The resource includes clearly outlined learning objectives, engaging starter activities, and step-by-step instructions for mastering each concept. Students will learn to count atoms in chemical compounds, differentiate between reactants and products, and use systematic methods to balance equations. Worked examples, interactive activities, and practice exercises are provided to reinforce learning and ensure concept retention. A periodic table is required for this lesson to identify elements and their symbols.
Ideal for chemistry lessons aligned with general science or specific exam board specifications, this PowerPoint is suitable for middle and high school students. Teachers can use it for direct instruction, group discussions, or individual practice. The resource, saved as a ‘.pptx’ file, is fully editable, allowing customization to meet specific class needs.
This PowerPoint has been refined to enhance clarity and engagement, ensuring effective delivery of essential chemistry skills. It is an invaluable resource for building foundational knowledge in chemical reactions and supporting student success in science education.
This PowerPoint resource is a complete instructional tool designed to teach students about energy changes in chemical reactions. The resource focuses on drawing and interpreting reaction profile diagrams for exothermic and endothermic reactions, defining activation energy, and explaining its role in chemical processes.
It includes clear learning objectives, engaging starter activities, and interactive tasks to reinforce understanding. Students will explore the differences between exothermic and endothermic reactions, learn how to label key features on reaction profiles, and understand how catalysts influence activation energy. The resource also covers key concepts like energy release, absorption, and bond breaking and forming.
Designed for high school chemistry lessons, this resource aligns with common science curricula and is ideal for interactive teaching, individual practice, or group work. It includes definitions, worked examples, gap-fill exercises, and review questions to assess understanding. Students are encouraged to draw diagrams, identify energy changes, and label components to deepen their comprehension.
This ‘.pptx’ file is fully editable and compatible with most presentation software, allowing teachers to customize content to suit specific classroom needs. The resource has been designed for clarity and engagement, ensuring it remains an effective teaching aid for energy concepts in chemistry.
This PowerPoint is an essential teaching aid for understanding energy calculations in chemistry. It guides students through calculating energy changes using bond energies and determining whether a reaction is exothermic or endothermic.
The resource covers key learning objectives: explaining why bond breaking is endothermic and bond making is exothermic, analyzing reactions in terms of energy transfer, and performing accurate energy change calculations using the correct units (kJ/mol). It includes definitions, worked examples, and practice problems to reinforce understanding. Starter activities prompt students to review concepts like activation energy, reaction profiles, and the energy changes associated with chemical processes.
Students will work with bond energy values to calculate energy changes in various reactions, such as combustion and synthesis. They will also interpret the significance of negative and positive energy changes, linking them to exothermic and endothermic processes. The resource highlights the importance of bond energy in understanding chemical reactivity and energy conservation.
This ‘.pptx’ file is fully editable, enabling teachers to adapt the content to specific curricula or student needs. It’s ideal for high school chemistry lessons and is aligned with many science specifications. This resource has been refined for clarity and engagement, ensuring its relevance as a tool for teaching energy changes in chemical reactions.
This GCSE chemistry resource bundle provides a thorough and accessible introduction to electrolysis, guiding students step by step through its principles, processes, and practical applications. It features five engaging lessons that cover everything from foundational concepts to required practical skills, ensuring students are well-prepared for exams.
The bundle includes:
Introduction to Electrolysis: Explains the basics of electrolysis, including how ionic compounds conduct electricity and the role of electrodes in separating elements.
Electrolysis of Molten Compounds: Demonstrates how electrolysis works with molten ionic compounds, providing clear examples and practice opportunities.
Electrolysis of Aluminium Oxide: Explores the extraction of aluminum using electrolysis, linking the process to real-world applications in industry.
Electrolysis of Aqueous Solutions: Teaches students how to predict the products of electrolysis in solutions, with diagrams and step-by-step explanations.
Required Practical: Electrolysis: Offers a detailed guide to the required practical, with instructions, safety considerations, and tips for accurately recording and analyzing results.
How to use: Each lesson includes clear explanations, diagrams, and exam-style questions to help students understand and apply key concepts. The practical lesson ensures students are confident in carrying out experiments and understanding their results. Perfect for GCSE chemistry teachers, this bundle provides a structured approach to teaching electrolysis while making it engaging and relevant to students.
Lesson 1 - Introduction to Electrolysis
Lesson 2 - Electrolysis of Molten Compounds
Lesson 3 - Electrolysis of Aluminium Oxide
Lesson 4 - Electrolysis of Aqueous Solutions
Lesson 5 - Required Practical Electrolysis
This PowerPoint resource is a step-by-step guide for conducting and analyzing a core chemistry experiment. It is designed to help students understand the electrolysis of aqueous solutions using inert electrodes, identify the products at the electrodes, and write balanced half-equations.
Key learning objectives include:
Conducting an investigation into the electrolysis of different aqueous solutions.
Identifying the elements or compounds formed at the cathode (negative electrode) and anode (positive electrode).
Writing and classifying half-equations as oxidation or reduction.
The resource provides a comprehensive introduction to electrolysis, including starter activities to review concepts like ionization and electrode reactions. It details the apparatus required, safety precautions, and experimental steps, ensuring students can carry out the investigation with confidence. Observations and guidance for analyzing results are also included, such as interpreting gas production and identifying metals deposited on electrodes.
The resource includes practice questions and worked answers, helping students reinforce their understanding of redox reactions, the role of ion movement, and why specific products form at the electrodes. Designed for high school chemistry lessons, this ‘.pptx’ file is ideal for practical sessions and theory reinforcement. It aligns with exam specifications, making it a valuable tool for assessment preparation. The PowerPoint has been refined to improve clarity and engagement, making it an essential resource for teaching the required practical on electrolysis.
This PowerPoint provides a detailed and interactive guide to understanding the principles and processes of electrolysis. It is specifically tailored for chemistry students learning to predict products, describe ion movements, and write balanced half-equations for the reactions at electrodes.
Key learning objectives include:
Predicting the products of the electrolysis of various solutions.
Explaining the movement of ions during the electrolysis of brine (sodium chloride solution).
Writing and classifying half-equations at the electrodes, identifying reactions as oxidation or reduction.
The resource is packed with engaging starter activities, clear definitions, rules for product prediction, and worked examples. Students will explore the differences between molten and aqueous electrolytes, identify products based on reactivity, and learn how ions interact at the electrodes. Detailed explanations guide learners through writing and balancing half-equations, such as for the electrolysis of brine, and highlight the practical applications of products like chlorine and sodium hydroxide.
Designed for high school chemistry lessons, this ‘.pptx’ file is aligned with many science curricula and is ideal for direct instruction, group activities, or independent practice. It includes review questions to consolidate learning and check comprehension. The resource is editable, allowing teachers to customize content for their specific teaching needs. This PowerPoint has been enhanced for clarity and user engagement, making it a valuable tool for understanding the electrolysis of aqueous solutions.
This resource is a detailed PowerPoint presentation designed to help students understand the industrial extraction of aluminium through electrolysis. It is ideal for teaching key concepts in electrochemistry and provides a structured approach to exploring this important process.
The presentation begins with clear learning objectives, including the ability to explain how aluminium is extracted from aluminium oxide, write the overall word equation, classify reactions at each electrode as oxidation or reduction using half-equations, and understand the role of cryolite in reducing energy costs. These objectives provide a clear roadmap for learning and align well with curriculum requirements.
Engaging starter activities are included to review foundational electrolysis concepts. Students are prompted to predict the products formed at electrodes during the electrolysis of compounds like copper chloride and lead bromide and to differentiate between cations and anions. These activities prepare students for the main content while reinforcing their prior knowledge.
The core content provides a step-by-step explanation of the electrolysis of aluminium oxide, emphasizing why aluminium cannot be extracted by carbon reduction. It introduces cryolite’s role in lowering the melting point of aluminium oxide, thereby reducing energy requirements and costs. The presentation includes interactive diagrams that students can replicate in their notebooks, helping them visualize ion movements and electrode reactions.
Detailed discussions of the anode and cathode reactions are accompanied by clear half-equations. Students learn how aluminium ions are reduced to form aluminium and how oxide ions are oxidized to form oxygen gas, which reacts with the carbon anodes to produce carbon dioxide. The economic and environmental implications of the process, such as high energy consumption and frequent anode replacement, are also highlighted.
To consolidate learning, the resource features review and challenge questions that cover electrode materials, the costs of electrolysis, and the uses of aluminium. It concludes with practical applications of aluminium, linking its properties to its uses in everyday life. This PowerPoint file (.pptx) ensures compatibility with widely used software, making it easy for teachers to deliver the content. This resource is an excellent tool for educators looking for an engaging and comprehensive way to teach the extraction of aluminium and the principles of electrolysis.