Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
PowerPoint that covers the following learning objectives:
Describe the reaction between metals and oxygen and write the word and symbol equation for this.
Describe the reaction between metals and water and write the word and symbol equation for this.
Deduce the order of reactivity for metals reacting with oxygen and with water.
Includes questions, answers, word equation practice and chemical symbol equation practice.
This is made for a GCSE chemistry class.
PowerPoint that covers the following learning objectives:
Describe what is meant by an inherited disorder and recognise examples.
Use a genetic cross to explain how inherited disorders are passed on and predict the probability of a child inheriting a genetic disorder.
Use a Punnett square diagram to predict the outcome of a genetic cross using the theory of probability.
This is made for a GCSE biology class.
Includes questions and answers.
PowerPoint that covers the following learning objectives:
State that in females the sex chromosomes are XX and in males they are XY.
Carry out a genetic cross to show sex inheritance.
Define key terms allele, dominant allele, recessive allele, heterozygous, homozygous, genotype and phenotype.
This is made for a GCSE biology class.
Includes questions, answers, diagrams to practice and explanations.
This PowerPoint presentation is an engaging and detailed educational tool designed to teach the process and applications of fractional distillation of crude oil. It is ideal for secondary school students studying chemistry, providing both theoretical and practical insights into this essential industrial process.
The resource begins with clear learning objectives, including explaining what fractional distillation is, describing how it works, naming the fractions obtained from crude oil, and identifying the uses of each fraction. Starter activities introduce key concepts, such as the definition of hydrocarbons, the meaning of saturation, and basic molecular structures.
Detailed slides explain the science behind fractional distillation. Students learn how crude oil is separated into fractions based on boiling points, the role of intermolecular forces, and why hydrocarbons condense at different levels of the fractionating column. A diagram of the process is included, along with exercises to test comprehension, such as ordering steps and identifying fractions.
The presentation also explores the uses of different fractions, from liquid petroleum gas (LPG) for cooking to bitumen for road construction. It highlights the practical applications of hydrocarbons and their importance as feedstock for the petrochemical industry. Interactive elements, such as video links and review questions, enhance understanding and engagement.
This PowerPoint (.pptx) file is structured to align with curriculum requirements and encourages active learning through practical examples and problem-solving exercises. Updated content ensures its relevance for both teachers and students, making it an excellent resource for teaching fractional distillation.
This PowerPoint presentation is a versatile and detailed resource designed for secondary school students to learn about hydrocarbons. It provides foundational knowledge of crude oil, hydrocarbons, and alkanes, aligning perfectly with chemistry curriculum requirements.
The resource begins with clear learning objectives, such as describing the composition of crude oil, defining hydrocarbons and alkanes, and using the general formula for alkanes to create molecular and displayed formulas. Starter activities introduce key topics by prompting students to recall fundamental concepts like chemical symbols and the origins of crude oil.
Through engaging content, the presentation explains how crude oil forms over millions of years from ancient sea creatures and plants, emphasizing its non-renewable nature. Students learn that crude oil is a mixture of hydrocarbons, defined as compounds containing only carbon and hydrogen. The section on alkanes highlights their saturated nature due to single covalent bonds and provides a step-by-step explanation of their general formula,
𝐶𝑛𝐻2𝑛+2.
Interactive tasks include completing tables for alkane formulas, identifying patterns in molecular structure, and answering exam-style questions. The resource emphasizes the real-world relevance of hydrocarbons by linking them to everyday products like petrol and candle wax.
Available as a PowerPoint file (.pptx), this resource includes detailed explanations, practical exercises, and answers to aid both teaching and learning. It is an ideal choice for educators seeking a structured and comprehensive teaching tool on hydrocarbons.
PowerPoint that covers pathogens, disease and preventing infection.
Includes questions, answers, a video and a mind-map.
The following learning objectives are covered:
State what a pathogen is and the 4 examples of pathogens that cause disease.
Describe how bacteria and viruses cause disease.
Explain how pathogens are passed from one organism to another, and use this to suggest ways of preventing the spread.
This is made for a GCSE KS4 science class.
PowerPoint that covers health and disease. Includes questions, answers and a mind-map to complete.
The following learning objectives are covered:
Describe health as a state of physical and mental wellbeing.
State some causes of ill health.
Describe how diseases can interact.
This is made for a GCSE KS4 science class.
PowerPoint that covers the effects of alcohol on the body and the long-term effects of drinking alcohol.
This is made for a GCSE KS4 science class.
The following learning objectives are covered:
Describe the short term and long term effects of drinking alcohol.
Describe the effects of alcohol on unborn babies.
Includes questions, answers, a mind-map to fill in, a short comprehension and a poster opportunity.
PowerPoint that covers GCSE smoking. This is for a KS4 GCSE class.
Learning objectives:
Describe the effects of the harmful substances found in tobacco.
Describe the effect of smoking on unborn babies.
Includes questions, answers, a short comprehension and a video.
This PowerPoint presentation designed to teach students the fundamental concepts of heat energy changes during chemical reactions. It is a valuable resource for educators covering thermochemistry or introductory chemistry topics in their curriculum.
The presentation begins with engaging starter activities to prompt critical thinking, such as identifying units of energy and temperature, recognizing signs of chemical reactions, and determining the appropriate graphs for data types. These activities set the stage for the main content while reviewing key concepts.
Key learning objectives are outlined, including defining exothermic and endothermic reactions, distinguishing between the two based on temperature changes in the surroundings, and providing real-life examples of each type. The resource uses accessible language and visuals to explain these concepts. For instance, “Exothermic” is broken down to mean “Exit Heat,” where energy is released, causing the surroundings to heat up. Conversely, “Endothermic” is described as “Enter Heat,” where energy is absorbed, resulting in a cooling effect.
The presentation includes numerous examples of exothermic and endothermic processes, such as:
Exothermic: Combustion, neutralization reactions, oxidation, and single-use/reusable hand warmers.
Endothermic: Sports ice packs, thermal decomposition, and sherbet reactions.
Interactive slides encourage students to identify temperature changes and classify reactions as exothermic or endothermic. Real-world applications, such as self-heating cans and sports ice packs, are explained in detail, making the material relatable and engaging.
The resource also includes review questions and tables for students to complete, consolidating their understanding of reaction types and their practical implications. The PowerPoint file format (.pptx) ensures ease of use and compatibility for teachers. This presentation is an excellent tool for teaching energy changes in chemical reactions, combining theory with practical applications for an engaging learning experience.
This PowerPoint presentation provides a comprehensive introduction to electrolysis, making it an essential tool for secondary school students learning this fundamental chemistry concept. The resource breaks down the principles of electrolysis, its industrial applications, and the processes involved in ionic compounds.
The lesson begins with clear learning objectives, including defining electrolysis, describing the movement of ions, and explaining why this process requires ionic compounds to be molten or in an aqueous solution. Starter activities engage students with foundational questions about ionic and covalent compounds, ions, and the role of electricity in chemical reactions.
Key topics covered include:
Definition of Electrolysis: Students learn that electrolysis involves using electricity to break down ionic compounds (electrolytes) into their constituent elements.
Electrolysis Components: The roles of the anode (positive electrode), cathode (negative electrode), and electrolyte are explained in detail. Concepts such as cations (positive ions) moving to the cathode and anions (negative ions) moving to the anode are introduced with mnemonic aids like “PANIC” (Positive Anode, Negative Is Cathode).
Demonstrations and Applications: Practical examples include the electrolysis of molten sodium chloride and potassium chloride. Students observe how different ions move and interact at the electrodes, forming elements like chlorine gas and sodium metal.
Industrial Relevance: The presentation highlights electrolysis as a critical industrial process used to extract elements like aluminium and chlorine from their ores.
Interactive elements, such as gap-fill activities, diagrams, and guided demonstrations, enhance engagement and understanding. Students are also encouraged to apply their knowledge through practice questions and structured tasks.
Available as a PowerPoint file (.pptx), this resource is aligned with curriculum standards and regularly updated to ensure relevance. It is ideal for teachers aiming to deliver engaging lessons on electrolysis, helping students grasp this vital chemistry topic.
Structure and Properties of Simple Covalent Molecules is an engaging and detailed PowerPoint resource designed for GCSE-level chemistry students. This lesson explores the characteristics of simple covalent molecules, their bonding, and their physical properties, aligning with key curriculum standards.
The lesson begins with a starter activity reviewing bonding types and drawing dot-and-cross diagrams for water and nitrogen, ensuring students are engaged and prepared for the topic. Learning objectives include:
Describing the limitations of different molecular representations (dot-and-cross, ball-and-stick, and displayed formula diagrams).
Defining intermolecular forces and their impact on molecular properties.
Explaining why simple covalent molecules have low melting and boiling points and why they do not conduct electricity.
Core content is enhanced with:
Comparisons of molecular representations to highlight their advantages and disadvantages.
An introduction to intermolecular forces as attractions between molecules, distinct from covalent, ionic, and metallic bonds.
An explanation of how molecule size affects the strength of intermolecular forces and trends in melting and boiling points.
Real-world connections, such as why pure water doesn’t conduct electricity but saltwater does.
Interactive activities and review questions test students’ understanding of key ideas, including trends in molecular size, bonding properties, and conductivity. Students are challenged to apply concepts to examples like fluorine and bromine, fostering critical thinking.
Formatted as a .pptx file, this resource is compatible with most devices and is perfect for classroom teaching or independent learning. It includes modern visuals and tasks to engage students effectively.
Ideal for science educators, this resource provides a comprehensive introduction to the structure and properties of simple covalent molecules, building a strong foundation for further studies in chemistry.
This comprehensive PowerPoint resource on Covalent Bonding is designed to help students understand how non-metal atoms form bonds through the sharing of electrons. It provides a structured lesson plan that includes starter activities, clear explanations, and interactive learning objectives. Key topics covered include the definition of covalent bonding, how bonds form, and detailed instructions for drawing dot-and-cross diagrams of simple molecules such as H₂, F₂, O₂, CO₂, CH₄, NH₃, and H₂O.
The presentation is ideal for secondary school science students and aligns with chemistry curricula focused on bonding and molecular structures. Starter activities engage students by reinforcing prior knowledge, such as properties of metals and metallic bonding, while guiding them to categorize compounds as ionic or covalent. The slides are rich with examples and include step-by-step modeling of covalent bonding, which aids visual learners in grasping the concept.
Updated for clarity and usability, this PowerPoint includes review questions to consolidate learning and practice. It is a ready-to-use resource for teachers, complete with editable slides to tailor the content to specific classroom needs. The file format is .pptx, ensuring compatibility with most devices and software.
Perfect for lessons, revision, or self-study, this resource makes understanding covalent bonding accessible and engaging for students.
This engaging PowerPoint presentation on Metallic Bonding provides an in-depth exploration of how metal atoms bond and the resulting properties of metals. It offers a complete lesson plan for secondary school students, including clear learning objectives, interactive starter activities, and comprehensive content explanations. Key topics include the definition of metallic bonding, the concept of delocalized electrons, the formation of giant lattices, and the physical properties of metals such as malleability, ductility, conductivity, and high melting/boiling points.
Designed to align with chemistry curricula, the resource also introduces alloys, explaining their composition, properties, and the science behind their hardness compared to pure metals. Students are encouraged to apply their understanding through review questions, practical examples, and opportunities to draw diagrams. This resource demystifies concepts such as the sea of delocalized electrons and their role in the unique characteristics of metals.
Perfect for teachers and students, this PowerPoint (.pptx file) is editable, making it easy to tailor to specific classroom needs. Updated recently to enhance usability and content accuracy, this resource is suitable for lessons, revision, or independent study. It is particularly useful for visual learners, with detailed diagrams and examples that bring the topic to life.
Whether used for classroom instruction or exam preparation, this presentation provides a robust foundation in understanding metallic bonding and its applications.
PowerPoint that covers the following learning objectives:
Describe and explain what happens to light when it passes through a prism.
State how primary colours add to make secondary colours.
State the effect of coloured filters on light and explain how filters and coloured materials subtract light.
This is made for a KS3 science class.
Includes questions, answers, diagrams, examples and a link to a virtual simulation of dispersion.
PowerPoint that covers the following learning objectives:
Investigate how light travels through a lens.
Describe the difference between a convex lens and a concave lens.
Identify the focal point in a light ray diagram of a convex lens.
This is made for a KS3 science class.
Includes questions, answers, diagrams and link to a virtual simulation.