Hero image

Nteach's Shop

Average Rating4.73
(based on 339 reviews)

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.

158Uploads

362k+Views

313k+Downloads

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
GCSE Physics P2 - Electrical Power (E=Pt & P=IV)
NteachNteach

GCSE Physics P2 - Electrical Power (E=Pt & P=IV)

(1)
A completely resourced lesson on GCSE Physics P2 - Electrical Power (E=Pt & P=IV) including key content from AQA exam specification. Starter focuses on units and what they measure as a nice recap of all P2 units of measure. Power and a key definition is provided is reviewed through relatable examples and then put into the context of electrical devices. Examples of calculating power from energy used and time are provided with a worksheet for this. Activity included for power rating circus is optional as alternatively another worksheet is provided allowing the exercise to be completed without a power rating circus. Energy is then related to current and potential difference with the key equations and exercised with a worksheet. Finally questions to identify appropriate fuse ratings for electrical devices. More P2 lessons to come.
GCSE 9-1 AQA Physics - P11.2 - Pressure and Liquids
NteachNteach

GCSE 9-1 AQA Physics - P11.2 - Pressure and Liquids

(0)
New GCSE AQA Physics lesson on ’ Pressure in Liquids’ written in line with new AQA Physics specification. All questions provided with answers within power point. The lesson starts with a question on the dangers presented to deep sea divers. How liquids exert a pressure is demonstrated with a visual of a series of containers with different heights of liquid inside whilst highlighting the liquid has mass and therefore weight - this is then linked back to pressure = force/area. The importance of height in relation to pressure is further reviewed with a water bottle that has holes at different heights - the water jets shooting out is then discussed. Finally reviewing the importance of density to mass to weight and therefore pressure leads to the formation of the equation, P= ρgh - practice of the use of the equation is provided by looking at the pressure beneath the sea at different depths. The dangers of deep sea scuba diving are again discussed with the lesson knowledge gained. The lesson is concluded with a set of review question. Lesson Objectives: - Explain how a liquid exerts a pressure. - Explain how pressure exerted by a liquid can be increased. - Explain how pressure varies at different points in liquid. - Calculate the pressure in a liquid column.
GCSE 9-1 - AQA Physics 4.7 - Magnetic fields and current
NteachNteach

GCSE 9-1 - AQA Physics 4.7 - Magnetic fields and current

(0)
New GCSE AQA Physics lesson on Magnets Fields & Currents written in line with new AQA Physics specification. All questions provided with answers within power point. Lesson Objectives: Explain the relationship between electric current and magnetic fields Draw the magnetic field around a current carrying wire Identify ways in which an electromagnetic field strength can be increased Explain what an electromagnet is and how once can be made
GCSE 9-1 AQA Physics 4.7 - Generator Effect
NteachNteach

GCSE 9-1 AQA Physics 4.7 - Generator Effect

(3)
New GCSE AQA Physics lesson on the generator effect written in line with new AQA Physics specification. All questions provided with answers within power point. Explain what the generator effect is Explain how potential difference can be induced in a wire Identify what affects the size of induced potential difference in a generator Detail how to deduce the direction of induced current
GCSE AQA Physics 4.7 - AC DC Generator
NteachNteach

GCSE AQA Physics 4.7 - AC DC Generator

(2)
New GCSE AQA Physics lesson on the AC DC generators written in line with new AQA Physics specification. All questions provided with answers within power point. Explain how the generator effect is used in an alternator to generate ac Explain how a ‘dynamo’ generates dc current Interpret graphs of potential difference generated in the coil against time. Explain how a moving-coil microphone works.
GCSE 9-1 AQA Physics 4.7 - Transformers and the National Grid
NteachNteach

GCSE 9-1 AQA Physics 4.7 - Transformers and the National Grid

(3)
New GCSE AQA Physics lesson on the Transformers and the National Grid written in line with new AQA Physics specification. All questions provided with answers within power point. Lesson Objectives: Explain the principle behind transformers Explain how the ratio of the p.d across two coils relates the number coil turns Calculate the current from the transformer input supply to provide a set power output Detail the advantages power transmission at high p.d
GCSE Physics P1 - Thermal Radiation & Surfaces
NteachNteach

GCSE Physics P1 - Thermal Radiation & Surfaces

(2)
Complete lesson on thermal radiation and surfaces with key content from AQA Physics. Starter includes picture prompts for key words from heat transfer topic. Main includes experiment which requires some resources to be prepared with simple materials if not already available but can be easily produced. Fun infra-red images of different objects and animals for a guessing game. Plenary uses recent news item on LA reservoir to challenge pupil thinking. Included are plenty of questions where some can be set as homework. More lessons to in same format for P1. https://www.tes.com/member/Nteach
GCSE AQA Physics - P6.1 Density, Mass and Volume + REQUIRED PRACTICAL 5
NteachNteach

GCSE AQA Physics - P6.1 Density, Mass and Volume + REQUIRED PRACTICAL 5

(4)
New GCSE AQA Physics lesson on ‘Density, Mass and Volume’ written in line with new AQA Physics specification. Lesson Outline: Nice simple starter asks pupils to list objects in order of density. Density is then clearly explained with visual effects to provide an example with a definition. Volume is also explained with comparative visuals. This lead to density being considered with volume and then both considered to produce mass - leading m=ρV. Some review questions practice the use of this equation. Pupils are tasked with finding the density of different objects provided by the teacher (simple shapes of common materials required). REQUIRED PRACTICAL 5 To continue the lesson the story of Archimedes and the gold crown is told featuring some key questioning for pupils. This then leads to pupils finding the density of irregular shaped objects by ‘displacement technique’ (REQUIRED PRACTICAL 5). To further extend pupil knowledge Archimedes principle of displacement is further explored with floating objects such as ships in water, icebergs and ice on water. Lesson Objectives: - State and explain the properties called volume, density and mass. - Use the density equation to calculate different properties of objects. - Describe in detail experiments to identify an objects density. - Explain how large objects such as ships float in water.
Christmas Science Quiz 2015 (2 choices)
NteachNteach

Christmas Science Quiz 2015 (2 choices)

(2)
A Christmas Science Quiz to finish a hard term with to have a bit of fun with the class and at the same time still doing work in class relevant to Science. 2 quizzes to use, one basic and one extended. Basic Quiz contains 5 rounds: 1)Biology Trivia (5 questions) 2)Chemistry Trivia (5 questions) 3) Physics Trivia (5 questions) 4) What is under the microscope? (10 questions) 5) Who is the Secret Scientist Santa? (5 questions) With some bonus questions between each round. (5 questions) Extended Quiz contains 6 rounds: 1)Biology Trivia (10 questions) 2)Chemistry Trivia (10 questions) 3) Physics Trivia (10 questions) 4) What is under the microscope? (10 questions) 5) Who is the Secret Scientist Santa? (5 questions) 6) What is the pix-elated piece of science equipment? (5 questions) With some bonus questions between each round.
GCSE Physics P2 - Momentum
NteachNteach

GCSE Physics P2 - Momentum

(0)
A completely resourced lesson on GCSE Physics P2 - Momentum including key content from AQA exam specification. The starter begins with getting pupils to relate size and velocity of moving bodies to momentum. The equation for momentum is clearly explained and designed with an exercise in rearranging the equation (with the triangle technique). Questions follow to practice the use of this equation. Momentum is consolidated with a literacy task relating to a Newtons cradle. Conservation of momentum is detailed in relation to collisions with questions and answers to practice answering questions relating to this. Conservation of momentum is detailed in relation to explosions with questions and answers to practice answering questions relating to this. More P2 lessons to come
GCSE Physics P2 - Forces and Driving
NteachNteach

GCSE Physics P2 - Forces and Driving

(1)
Completely resourced lesson on Forces and Driving with key content from AQA Physics. Learning Objectives: - Evaluate different vehicle speeds for stopping distances. - Explain what happens during braking of a vehicle. - Identify and explain what can effect the stopping distance of a vehicle. - Investigate how a drivers reaction time effect stopping distance. Lesson starts by discussing the speed limit for vehicles against the maximum speeds vehicles can achieve. A quick review on resultant forces in relation to vehicles is explored through questioning, this leads to the physics of stopping vehicles through braking. Stopping distances are reviewed with thinking and braking distances, this leads to a class activity on reaction times to consolidate thinking distances. Summary questions are provided on this topic to finish the lesson. Plenary poses the starting question again in light of new information pupils will now have.
GCSE Physics P2 - Forces and Elasticity
NteachNteach

GCSE Physics P2 - Forces and Elasticity

(0)
Completely resourced lesson on Forces and Elasticity with key content from AQA and Edexcel Physics. Learning Objectives: - Identify objects in compression or tension. - Explain what is meant by a proportional relationship. - Describe an experiment to extension of an object due to force applied. - Interpret and draw conclusions from a force-extension graph. Lesson starts by discussing what elasticity is in relation to familiar, everyday objects which then challenge pupil thinking with 'slo-motion' videos of these objects being impacted. Elasticity is then further explored with compression and tension. A quick review on proportionality is covered through questioning supporting pupils in key maths skills required. A class experiment is detailed using simple Physics equipment to test everyday materials for to produce a force-extension graph. Conclusions can then be drawn from the data produced in this experiment. Hooke's law is detailed and related to a simply spring extension experiment and used to highlight spring constants. Plenary poses a summary question for pupils to answer with detailed responses showing their understanding of elasticity.
GCSE Physics Complete set of lessons on Nuclear Physics
NteachNteach

GCSE Physics Complete set of lessons on Nuclear Physics

(2)
A collection of lessons covering key content relating to Nuclear Physics. Lesson 1 -Atomic Structure & Radioactivity Lesson 2- Alpha, Beta & Gamma Radiation Lesson 3- Uses of Radiation Lesson 4- Half-life Lesson 5- Fission Lesson 6 - Fusion
GCSE AQA Physics - P4.2 - Current and Charge
NteachNteach

GCSE AQA Physics - P4.2 - Current and Charge

(2)
Complete AQA GCSE Physics lessons on Current and Charge. Starter begins with discussion of why static electricity couldn't be used as the power source for lighting which follows on from the previous lesson on statics (will add varied starters at a later date) Key circuit symbols & functions are reviewed using the worksheet which can be done with electrical components and highlight the required circuit symbols to recognise by the AQA specification. The main consists simple circuit building and drawing activities to provide a foundation to build the circuits required for experiments later in the unit. Questioning leads to a definition of electrical current and electrical charge with the appropriate equations detailed. Plenary questions are provided and also a true or false activity on the lessons content. Lesson objectives: 1) Identify circuit symbols and their functions. (D) 2) Build electrical circuits using circuit diagrams. (C) 3) Draw circuits using appropriate symbols. (B) 4) Define the term ‘electrical current’ and carry out current calculations. (A) Note: This lesson is formatted is similar content to previously listed 'Circuits, current and charge lesson' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
GCSE AQA Physics - P7.6 - Nuclear radiation uses (medicine)
NteachNteach

GCSE AQA Physics - P7.6 - Nuclear radiation uses (medicine)

(0)
The lesson is summarised with review questions on the content covered. USES OF NUCLEAR RADIATION 1) Review the properties of the 3 types of nuclear radiation. 2) Identify that nuclear radiation can be dangerous and useful. 3) Explain in detail one or two applications of nuclear radiation. 4) Apply your knowledge of nuclear radiation to exam questions. Applications explored in detail: geiger-muller counter, x-rays, badges, automatic thickness monitoring, traces, smoke alarms, carbon dating and uranium dating.
GCSE AQA Physics - P7.3 . Atoms and changes in the nucleus (Nuclear Radiation)
NteachNteach

GCSE AQA Physics - P7.3 . Atoms and changes in the nucleus (Nuclear Radiation)

(2)
A complete and detailed lesson on Radioactivity, focusing on atomic structure, alpha particles, beta particles and gamma radiation. (created with AQA specification content). Lesson Objectives: - Recall and detail the basic structure of an atom. - Relate number of protons, electrons and neutrons to mass and atomic numbers. - Explain how atoms form ions & identify the isotopes of different elements. - Explain radioactivity in terms of alpha, beta and gamma radiation. The lesson guides pupils very clearly through exactly what radioactivity is by starting with the atom and so isotopes. Starter prompts pupils to find the key words for the lesson using a ‘say what you see’ game. Following a review of the atoms structure and properties through questioning. A task exploring the periodic table using relative atomic mass and atomic number familiarises pupils with these as they are important later. Ions are reviewed through a task using visuals of atoms/ions to identify ions or atoms with appropriate charge. This then leads onto explaining what isotopes which can then be linked to unstable elements. Radioactivity is then explained through a basic description relating to like charges of protons in the nucleus and the required binding energy to hold the nucleus together. Alpha, Beta and Gamma are then reviewed with visuals of the process to relate to pupils clearly what happens. A literacy task summarises and reviews the lesson.
GCSE AQA Physics - P5.4 - Electric Currents (charge) and energy transfer
NteachNteach

GCSE AQA Physics - P5.4 - Electric Currents (charge) and energy transfer

(4)
New GCSE AQA Physics lesson on ' Electric Currents (charge) and energy transfer' written in line with new AQA Physics specification. The starter is in the style of the 'countdown conundrum' which is for some of the lessons key words. Questions review key electric current knowledge from earlier current electricity which is relevant to the lesson and also serves as a recap/revision opportunity. Key electrical current concepts are summarised. Current and charge are related together in an explanation and through the relevant equation with questions for pupils to complete using this. Energy in circuits is related to voltage supplied by a supply to electrical charge and how this will then deliver energy to components, this also offers the chance to review some circuit rules. The E = V x Q equation is explained leading to questions using the equation plus ohm's law and circuit rules. A collection of review questions and some exam style questions conclude the lesson. Lesson Objectives: 1) Review key content on electrical current. 2) Identify what a unit of charge is. 3) Perform calculations for energy transfer in circuits using p.d and charge. 4) Relate energy transfer by charge to different electrical components.
GCSE AQA Physics - P7.7 - Nuclear Fission
NteachNteach

GCSE AQA Physics - P7.7 - Nuclear Fission

(0)
New GCSE AQA Physics lesson on 'Nuclear Fission ’ written in line with new AQA Physics specification. Learning Objectives for Fission lesson: State and explain what is meant by Nuclear Fission. State the isotopes commonly used in Nuclear Power stations. Explain the process of a nuclear fission chain reaction. Identify and explain in detail the key features of a Nuclear Power station.
GCSE AQA Physics- P1.6-7 - Energy and Efficiency
NteachNteach

GCSE AQA Physics- P1.6-7 - Energy and Efficiency

(3)
New GCSE AQA Physics lesson on 'Energy and Efficiency' written in line with new AQA Physics specification. The lesson can start with either a task to correct statements provided about energy or to discuss what happens to wasted energy. Different types of bulbs are shown through images which pupils are likely to have comes across, they are then prompted to discuss how they are different and why we use different ones, this lead to talking about efficiency. Useful and wasted energy are explained and related to context and energy flow diagrams previously used. Also a key explanation of what happens to wasted energy is given. Pupils must then identify whether particular energy changes are useful or wasteful for certain devices. Energy efficiency is detailed to students and then presented as 'units of energy' in a form similar to sankey diagrams (which are no longer required by AQA but can help students rationalise percentages). A class activity is outlined which requires groups of pupils to shown how energy is split by different devices and can help students visually see how portions of energy are distributed. Following this the energy equation is given which is then used by two sets of review questions. The lesson concludes with content for higher tier students which looks at ways energy waste can be reduced. Lesson Objectives: 1) Explain what is meant by useful and wasted energy. 2) Explain what eventually happens to wasted energy. 3) Calculate the energy efficiency of different appliances. 4) Detail how energy transfers can be made more efficient. (Higher tier only)