Hero image

SWiftScience's Shop

Average Rating4.24
(based on 769 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

838k+Views

476k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE (2016) Chemistry  - Finite & Renewable Resources
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Finite & Renewable Resources

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a ‘Think > Pair > Share’ task, pupils will need to consider the definitions of the terms ‘Finite’ and ‘Renewable’. After a discussion in pairs and as a class, the definitions for these words can be revealed which pupils can write in their books. Next, pupils will watch a video on the availability and sustainable use of Earth’s resources, pupils will need to answer a set of questions whilst watching these videos and can self-assess their work once finished. Pupils are now introduced to a variety of natural resources which are getting used up by the chemical industry, students are given a list of these raw materials and are then asked to consider what factors might determine how quickly they may run out and the uncertainties surrounding estimates of how long they will last. After a discussion pupils can mind map their ideas, before the answers revealed and students can self-assess their work. Next, pupils are shown how to calculate orders of magnitude - the skill is demonstrated and then pupils need to have a go at tackling a problem. The next part of the lesson focuses on renewable resources, some examples of renewable energy sources are introduced and then students need to complete a task whereby they read information about different renewable fuel sources and have to sum up the advantages and disadvantages for each. Students can complete a table of their ideas in their books, this task can be self-assessed using the mark scheme. Finally, pupils complete an exam-style question on this topic and self-assess their work. The plenary task requires pupils to summarise what they have learned in the lesson using one of the sentence starters. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk@gmail.com and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Atmospheric Pollutants
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Atmospheric Pollutants

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson asks students to think > pair > share some of their answers to questions about pollution - where does it come from? How may we monitor it? Once pupils have gathered together their ideas as groups, a class discussion can highlight some of the important ideas & the next slide details the answers. The next task focuses on sulfur dioxide pollution and it’s contribution to the formation of acid rain. Pupils will be given some information in pairs about this pollutant and will be required to answer questions about this information in their books. Once completed pupils are able to self-assess their work using the answers provided in the PowerPoint. Pupils will now watch a video on complete vs. incomplete combustion to think about the gases released into the atmosphere via these two processes. They will need to answer a set of questions whilst watching this video, they can then self-assess their work using the answers provided. Two further atmospheric pollutants are now introduced to the class - nitrogen oxides and also solid particulates released by diesel engines. Pupils will now complete a fill-in-the-blank task to summarise what they have learned to far this lesson, this task can then be self-assessed using the answers provided. This is followed by a quick check ‘True or False’ activity, pupils will need to identify whether a list of statements are true or false. The next part of the lesson focuses on how scientists can monitor pollution, pupils are given a set of results from particle collector pads which have been left in certain locations around the UK. Pupils need to record their results in a table, draw a graph to represent the results and write a conclusion about their results. The plenary task is for pupils to either summarise what they have learned today in three sentences or write a definition of a list of key words from today’s lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Global Climate Change
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Global Climate Change

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly be given some data on the rise in global temperature over the last 150 years, they will firstly need to plot this data on a graph and then will need to answer a set of questions. Pupils will then focus on the different ways in which global climate change will affect the environment, each pupils will be given a different card of information and they will need to walk around the room and share with each other to complete the table of effects. The next part of the lesson will look at reducing greenhouse gas emissions, firstly students will watch a video which focuses on carbon dioxide emission reduction. Pupils will need to answer some questions whilst watching the video which can then be self-assessed using the mark scheme provided. After this, pupils will told ways in which methane emissions can be reduced. Pupils will now complete a ‘Think > Pair > Share’ task whereby they discuss what ‘Carbon footprint’ might mean and will try to come up with a definition, the actual definition is then revealed and pupils can mark their work, making corrections where needed. Pupils are now asked to come up with a mind map listing all the ways in which their actions contribute to their annual carbon footprint, once they have created a list they need to come up with an action plan of how to tackle this and reduce their overall carbon footprint. This task can be self or peer assessed using the mark scheme provided. The final part of the lesson is an outline of problems faced when trying to reduce your carbon footprint, pupils need to understand these issues. The plenary task gives pupils a list of answers, for each answer pupils need to come up with the question that would lead to that answer. All resources are included within the PowerPoint presentation, if you have any questions please email me at swift.education.uk@gmail.com. Any feedback would be greatly appreciated :) Thanks!
NEW AQA GCSE (2016) Chemistry  - The Greenhouse Effect
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - The Greenhouse Effect

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a video on the greenhouse effect, pupils will be supplied with some questions to answer whilst watching the video. Once complete this task can then be self-assessed using the answers provided. Pupils will then need to be required to complete a diagram of the greenhouse effect by adding in statements to the correct boxes, this work can also be self-assessed using the mark scheme. Pupils will now think about the factors which have contributed to the rise in carbon dioxide in our atmosphere. Firstly they will need to ‘Think > Pair > Share’ their ideas of why there has been a sharp increase in CO2 over the last 100 years or so, pupils will then share their ideas with the class and some of the factors can be revaled via the PowerPoint presentation. Pupils will now be given some information on models of global warming, using this information they will need to complete a worksheet. This task can be self/peer assessed using the answers provided on the PowerPoint. The last task is an exam-style question on the topic of the greenhouse effect, again students can self assess their work using the mark scheme. The plenary task requires pupils to summarise what they have learned this lesson in three sentences. All resources are included within the PowerPoint presentation, if you have any questions please email me at swift.education.uk@gmail.com. Any feedback would be greatly appreciated :) Thanks!
NEW AQA GCSE (2016) Chemistry - The History & Evolution of Our Atmosphere
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - The History & Evolution of Our Atmosphere

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by looking at the percentage of different gases in our atmosphere today compared to 3 billions years ago, this then follows into a task whereby pupils will need to walk around the room to read information posters on the evolution of our atmosphere. Using the information they will need to complete a set of questions, this work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on theories of how life evolved on Earth, to begin with students need to ‘Think > Pair > Share’ their ideas about the conditions needed for life on Earth. Once this has been discussed as a class, some of the factors can be revealed on the PowerPoint presentation and one of the theories of how life evolved is outlined, using an animation. Pupils will now complete a mid-lesson progress check, this task can be self-assessed once complete. The next task requires pupils to construct a time-line of events outlining the history of the evolution of the Earth’s atmosphere and life on on Earth given the information they have learned so far this lesson. Pupils can self/peer assess their work using the mark scheme provided in the PowerPoint. The final task is for pupils to discuss their ideas about how carbon dioxide levels decreased so dramatically from being the majority of the Earth’s atmosphere to now only 0.04%. Pupils can mind map their ideas, before the answers are revealed using the PowerPoint. The plenary task is for pupils to complete a 3-2-1 of what they have learned during the lesson - 3 facts, 2 key words and 1 question. All resources are included within the PowerPoint presentation, if you have any questions please email me at swift.education.uk@gmail.com. Any feedback would be greatly appreciated :) Thanks!
NEW AQA GCSE Chemistry BIG BUNDLE: Organic Chemistry, Analysis, The Earth's Atmosphere & Resources
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry BIG BUNDLE: Organic Chemistry, Analysis, The Earth's Atmosphere & Resources

(0)
This is a bundle of whole lessons and resources which meets all specification points for the NEW AQA GCSE Chemistry Combined Science Trilogy course for the ‘Organic Chemistry’, ‘Chemical Analysis’, ‘The Earth’s Atmosphere’, ‘The Earth’s Resources’, ‘Using our Resources’ SoW. This bundle includes 28 lessons, which is around 10 weeks worth of work, with all additional resources included. The lessons contain a mix of differentiated activities, progress checks, extra challenge tasks, exam-style questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks as answers/mark schemes have been provided within the PowerPoint slides. I have published a similar ‘Big Bundle’ of lessons for the AQA GCSE Biology Combined Science Trilogy course. I have had many purchases of this big bundle along with 6 detailed 4-5* reviews, see link for further details:https://www.tes.com/teaching-resource/new-aqa-gcse-biology-big-bundle-cells-organisation-infection-and-response-bioenergetics-lessons-11701963. This bundle is of a similar standard! I have also published a bundle of lessons for the first half of the AQA GCSE Chemistry Combined Science Trilogy course: https://www.tes.com/teaching-resource/new-aqa-gcse-chemisty-big-bundle-atoms-bonding-quantitative-chem-electrolysis-rates-of-reaction-12170683 Thank you for looking, please ask any questions via the comments section if you need to :)
NEW AQA GCSE Chemisty BIG BUNDLE: Atoms, Bonding, Quantitative Chem, Electrolysis, Rates of Reaction
SWiftScienceSWiftScience

NEW AQA GCSE Chemisty BIG BUNDLE: Atoms, Bonding, Quantitative Chem, Electrolysis, Rates of Reaction

(0)
This is a bundle of whole lessons and resources which meets all specification points for the NEW AQA GCSE Chemistry Combined Science Trilogy course for the ‘Atomic Structure & Periodic Table’, ‘Structure & Bonding’, ‘Quantitative Chemistry’, ‘Chemical Changes, Electrolysis and Energy Changes’ and ‘Rates of Reaction’ SoW. This bundle includes 41 lessons, which is around 12 weeks worth of work, with all additional resources included. The lessons contain a mix of differentiated activities, progress checks, extra challenge tasks, exam-style questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks as answers/mark schemes have been provided within the PowerPoint slides. I have published a similar ‘Big Bundle’ of lessons for the AQA GCSE Biology Combined Science Trilogy course. I have had many purchases of this big bundle along with 6 detailed 4-5* reviews, see link for further details:https://www.tes.com/teaching-resource/new-aqa-gcse-biology-big-bundle-cells-organisation-infection-and-response-bioenergetics-lessons-11701963. This set of lessons is of the same standard! Thank you for looking, please ask any questions via the comments section if you need to :)
NEW AQA GCSE Chemistry - Chemical Analysis
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - Chemical Analysis

5 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical Analysis’ unit for the NEW AQA Chemistry Specification. Lessons include: Pure substances & mixtures Analysing chromatograms Testing for gases Testing for positive and negative ions Investigative analysis The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
NEW AQA GCSE (2016) Chemistry  - Instrumental Analysis
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Instrumental Analysis

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. The lesson begins with a ‘Think > Pair > Share’ task where students are required to discuss sectors which must reply upon efficient and effective instrumental methods of chemical analysis. After a short class discussion, the teacher can discuss the importance of instrumental analysis for environmental and health care sectors. Students will now be shown the difference between qualitative and quantitative methods of chemical analysis. They will then be given a set of statements, students will need to sort these statements into either advantages of disadvantages of instrumental methods of chemical analysis vs. traditional methods. Pupils will need to self-assess their work using the answers provided in the PowerPoint. Next, students will watch a video on flame emission spectroscopy and will need to use information provided in the PowerPoint to answer a set of questions. This work can be self-assessed using the answers provided. Following this, students will be provided with a set of information about this process, they will need to use this information to answer a set of questions. Their answers to these questions can be self-assessed using the mark scheme provided. Lastly, pupils will be shown a diagram showing the results of flame emission spectroscopy tests for different metals. The plenary task requires pupils to write a Whatsapp message about what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Testing for positive and negative ions
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Testing for positive and negative ions

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. Firstly, students will conduct an investigation which carries out flame tests to check for the presence of different positive ions. Pupils will need to follow the method provided and record their results in a table in their books, once this task is complete they can self-assess their work using the mark scheme provided. Pupils will then watch a video on the use of sodium hydroxide solution in the test for positive ions, they will need to answer a set of questions using the information provided in the PowerPoint presentation. The answers to this task are provided in the PowerPoint so students can self-assess their work. Next, pupils will need to complete a flow diagram to demonstrate the steps involved in identifying a range of positive ions by using sodium hydroxide solution, this task can be self-assessed using the mark scheme provided. To assess their knowledge of flame tests and use of sodium hydroxide solution in identifying positive ions, pupils will need to fill in the blanks in a summary table. This work can be self-assessed using the answers provided. The next part of the lesson will focus on negative ions, firstly students will watch a video and will need to answer a set of questions using the information provided in the video. This work can self-assessed using the answers provided. Lastly, students will practice writing ionic equations for reactions which lead to the identification of either positive or negative ions before a final set of summary questions. Answers to these tasks are provided for self or peer assessment. The plenary task is for pupils to write a set of quiz questions to test their peers knowledge of what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Testing for gases
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Testing for gases

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. Students are introduced to the idea that scientists are able to conduct quick and simple tests to identify a number of gases - oxygen, carbon dioxide, hydrogen, chlorine. Pupils will now complete a circus of activities, moving around the room to conduct tests for the presence of oxygen, hydrogen and carbon dioxide, recording their results in a table in their books. Pupils will need to watch a teacher demonstration for the test for chlorine, they can also record their observations of this demo in their table of results. Pupils will then be shown a video outlining each of the gas tests, they can watch this to self-assess their answers from the investigations they carried out. Students will now be given a card sort, for each gas - oxygen, carbon dioxide, hydrogen and chlorine - they will need to identify the correct method and correct positive results. They should do this with their books closed so they don’t rely upon the results collected from the last task! Their work can then be self-assessed using the mark scheme provided. The next task is a ‘Quick Check’ activity whereby pupils need to answer a set of questions based upon what they have learned this lesson, the answers to this task is provided in the PowerPoint so students can either self-assess or peer-assess their work. The plenary task is ‘Take a minute’ where students need to spend a minute talking to the person next to them about what they have learned in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Analysing chromatograms
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Analysing chromatograms

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. The lesson starts with an introduction to chromatography, pupils are told the importance of the process along with an example of a chromatogram. Pupils will then watch a video on the steps involved with a chromatography experiment and they will need to arrange a set of statements in the correct order to put together a suitable method. This task can be self-assessed using the mark scheme provided on the PowerPoint. Pupils will now use these steps to conduct their own chromatography experiment, once they have completed this task they can stick their chromatogram in their books and complete a conclusion and evaluation. Next, pupils will watch another video which goes into more detail of the chromatography method, pupils will be provided with a set of questions which they will need to answer using the information provided in the video. The answers to these questions can then be self-assessed using the mark scheme provided. The next part of the lesson focuses on how to identify unknown substances using chromatography, pupils will firstly be shown a worked example of how to calculate Rf values. They will then be given a worksheet of chromatograms, for each one they will need to calculate the Rf value of each of the substances and will need to answer a set of questions also. This work can be self-assessed using the mark scheme provided. The plenary task requires pupils to write three facts, three key words and question on what they have learned during this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Pure substances & mixtures
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Pure substances & mixtures

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Pure substances and mixtures’ SoW. This lesson starts with a ‘Think > Pair > Share’ task on the differences between an element, compound and a mixture. Pupils will share their ideas as a class before definitions and a diagram for each is revealed on the PowerPoint presentation. The next task requires pupils to ‘Think > Pair > Share’ their ideas about what it means for a substance to be ‘pure’. Again, their ideas can be shared with the class before a definition of purity is revealed. Next, pupils will complete an investigation into the purity of water - they will be provided with three unknown liquids and conducting a range of tests they will need to determine which one is pure water, which is sea water and which is mineral water. They will record their results in a table and then present their findings to the class. Next, students are shown how chemists are able to analyse substances and determine whether they are pure or whether they are a mixture by determining their melting/boiling points, to see if it is at a fixed point or not. Pupils will then watch a video on this topic and will need to answer a set of questions, they can mark this work using the answers provided. Pupils will then be shown two examples of common formulations - paint and cleaning product. Lastly, pupils will then complete a ‘Quick Check’ task - answering a set of questions on what they have learned this lesson. They will then mark their work using the answers provided. The plenary task is for pupils to complete one of the sentence starters provided to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Natural polymers & DNA

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Firstly, pupils will need to complete a ‘True or False’ activity on carbohydrates, they will then be shown how polysaccharides are made from monosaccharides via a condensation reaction, as an example of a natural polymer. Pupils will also be provided with information on the structure of starch and glycogen ad how this relates to the function of these two polymers. Another example of a natural polymer are polypeptides/proteins which are made up of the monomers - amino acids. Again, pupils will be shown how a condensation reaction occurs to link together many amino acids molecules in a long polypeptide chain. Pupils will now complete a ‘Quick Check’ task to test their knowledge of what they learned so far this lesson, the answers to the questions will be provided in the PowerPoint for students to assess their own work. The next part of the lesson will focus on DNA as a natural polymer. Firstly, pupils will need to order the structures given in order of size - DNA, gene, chromosome, nucleus, cell. Next, pupils will watch a video on the structure and function of DNA and will need to answer a set of questions. This work can then be self-assessed using the answers provided in the PowerPoint. A diagram is then shown highlighting some of the key structural features of a double-helix DNA molecule, which pupils need to know and remember. The final task is a ‘Quick Check’ activity on the structure & function of DNA, students will need to answer the questions in their books and then peer or self-assess their work using the mark scheme provided. The plenary task is for pupils to write three quiz questions for pupils to test their peers knowledge of the topic learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Polymerisation
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Polymerisation

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Pupils will firstly be introduced to the idea of polymers and will provided with a definition, they will then be given a set of information in pairs - one will be provided with polyethene and the other will be provided with polypropene. Pupils will then need to complete an ‘Each one, teach one’ task where they teach other other about the polymers - the monomers they are made up of, their properties and also products in which they are used. This task can be self-assessed using the mark scheme provided. Pupils will now watch a video on polymerisation, using the video they will need to answer a set of questions which can then be self-assessed using the mark scheme provided. The lesson will now focus on condensation polymerisation, pupils will firstly be given a worksheet with a set of questions which will need to be answered using a set of information posters that will be placed around the room. This work can be either peer assessed or self assessed using the answers provided in the PowerPoint presentation. The last task requires pupils to complete an ‘Exam-style question’ on the topic of what they have learned this lesson, once this is complete students can assess their work using the answers provided. The plenary task is an anagram challenge, pupils will need to unscramble the anagrams to reveal key words from today’s lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Reactions with alkenes
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reactions with alkenes

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Students are firstly introduced to the idea of a ‘homologous series’ and look at how this applies to the pattern of formulae for the alkene series. Students are then asked to think about the differences between complete and incomplete combustion from what they have learned in previous lessons, before being shown the differences between complete/incomplete combustion of alkenes and how this explain why alkenes are rarely used as fuels. Next, students will watch a video on the reactions of alkenes with water and with halogens, using the information in the video they will need to answer a set of questions. The answers to this task are provided in the PowerPoint so that students can self-assess their work. Pupils will now be given a set of symbol equations between different alkenes and halogens, pupils will need to complete these calculations in their books, ensuring that they are balanced. Once complete, pupils can self-assess their work. The last part of the lesson focuses on the reaction of alkenes with hydrogen, students will be shown a simple hydrogenation reaction and will also be given some information about hydrogenation and whether it is a good or bad process in the production of margarine spreads from vegetable oils. Students will need to read this information and then answer a set of questions, this work can be self-assessed using the answers provided in the PowerPoint presentation. The plenary task is for pupils to write a Whatsapp message about what they have learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Cracking hydrocarbons
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Cracking hydrocarbons

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Firstly, students asked to think about a question that oil companies face - what to do with longer chain hydrocarbons which are in less demand than smaller chain hydrcarbons? Pupils can share their ideas in pairs, then as a class, before being introduced to the process of cracking. Next, as a recap of the structure of alkanes pupils will need to use ‘Molymod’ kits to make the first four alkanes in the homologous series, they will also need to complete a table to identify the structural & displayed formulae for each. This work can be self-assessed using the mark scheme provided. Now pupils are introduced to the process and products of cracking, students will then be given a set of hydrocarbons which are being ‘cracked’ with one of the products identified, they will need to identify the other product and also determine if it would be an alkane or an alkene. Once complete, this work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on the structure and properties of alkenes, students will firstly be given a set of facts about alkenes which they can take notes from. Next, students will watch a video about alkenes, they will be provided with a set of questions that they need to answer using this video. This work can be self-assessed using the answers provided. Using what they have learned in this video, the teacher will conduct a demonstration which tests four unknown substances with bromine water - pupils will need to record their results in a table and determine whether the unknown substances are alkenes or alkanes. Pupils will lastly complete a ‘Quick Check’ task, this is a set of questions which will summarise what pupils have learned during the lesson. They will be able to peer or self-assess their work using the answers provided. The plenary task is for pupils to sum up what they have learned this lesson in three sentences, using the list of key words provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry (2016) - Complete & incomplete combustion
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Complete & incomplete combustion

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. The lesson begins with pupils watching a video on the differences between complete and incomplete combustion, whilst watching the video students will need to answer a set of questions. This work can be self-assessed using the mark scheme provided. The next task requires pupils to complete an investigation which demonstrates the products of complete combustion, following the steps provided pupils should identify that limewater turns cloudy due to carbon dioxide and anhydrous copper sulphate turns blue in the presence of water. Next, students will focus on writing word and balanced symbol equations for the complete combustion of a set alkanes. Students can self-assess their work using the mark scheme provided. Students will then be a shown a worked example of a calculation used to work out the maximum amount of carbon dioxide released when a known mass of an alkane is burnt in a plentiful supply of air. Pupils will then need to complete a set of questions to practice this maths skill, the answers to these questions are provided in the PowerPoint so students can self-assess their work once it is complete. The final activity is a ‘Quick Check’ task for pupils to answer a set of questions which summarises what they have learnt this lesson, again the answers are provided in the PowerPoint. The plenary task will require pupils to write three sentences to sum up what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE  Chemistry (2016) - Fractional Distillation
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Fractional Distillation

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Pupils are firstly required to ‘THink > Pair > Share’ their ideas on the definition of a set of key words, once they have shared with each other and the class the definitions can be revealed, pupils can check whether their answers were correct. Pupils can now watch a video on fractional distillation, they will need to answer a set of questions whilst they are watching the video, their answers to this can be assessed using the mark scheme provided. Students will now be given a worksheet of levelled questions, placed around the room are information sheets which students will need to read and use to answer the questions on their worksheet. Once this task is complete students can peer/self assess their work using the answers provided on the worksheet. The final task, students will watch a video and will need to note down a use for each of the crude oil fractions listed, again this work can be checked and marked against the answers provided in the PowerPoint. The plenary task requires pupils to complete an ‘Exit Card’ - stating 3 facts, 2 key words and 1 question to test their peers knowledge of what they have learnt today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Hydrocarbons
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Hydrocarbons

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. The lesson begins on a description of hydrocarbons and why crude oil is so useful, this is followed by a video on crude oil. Whilst watching the video students will be required to answer a set of questions, this work can then be self-assessed using the mark scheme provided. The next part of the lesson requires students to watch a teacher demonstration of the distillation of crude oil, students will watch the teacher distill crude oil, removing at least four fractions. The fractions can be passed around the classroom and students will need to complete a results table to assess the smell, viscosity, colour and flammability of each fraction. Pupils will now focus on the structure of different alkanes, they will be introduced to the first four alkanes and be asked to think about why there is a pattern in the formulae of alkanes. Next, students will complete a summary table of the structural formulae, displayed formulae, 3D structure and boiling point of the first four alkanes in the homologous series. Students can self/peer assess their work using the answers provided. Finally, pupils will complete a ‘Quick Check’ task, which involves answering a set of questions about what they have learned this lesson. Those higher ability students may want to turn to the back of their books to avoid looking at notes, lower ability will need extra support. Again, the mark scheme for these questions is included in the PowerPoint. The plenary task requires pupils to write 3 facts, 3 key words and one questions to test their peers knowledge of what they have studied in class today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)