Hero image

Moz' Shop

Average Rating4.50
(based on 13 reviews)

Teacher of Science since 2012 - specialising in Physics & Biology Please rate and review so I can improve my resources!

79Uploads

36k+Views

37k+Downloads

Teacher of Science since 2012 - specialising in Physics & Biology Please rate and review so I can improve my resources!
History of the atom - Full Lesson
cmorrison78515cmorrison78515

History of the atom - Full Lesson

(0)
Lesson covering the evolution of our understanding of the atom. Looks at each model in chronological order: Democritus ‘Atomos’; JJ Thompson ‘Plumb Pudding’; Ernest Rutherford Gold foil experiment - includes practice questions for students Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more Developing: Recall the names and locations of the three sub-atomic particles found inside every atom. Securing: Describe the major differences between J.J. Thomson’s plum pudding model and Rutherford’s nuclear model of the atom. Exceeding: Explain how alpha-radiation may be used to determine the distribution of mas and positive charge inside atoms.
Using Radioactivity inc. carbon dating - FREE Lesson
cmorrison78515cmorrison78515

Using Radioactivity inc. carbon dating - FREE Lesson

(1)
Lesson designed to introduce and explain the various uses of radioactivity - including practice questions for students Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more Developing: Describe three ways that radioactive isotopes are used. Securing: Describe why it is important to use small quantities of radioactive tracers with short half-lives. Exceeding: Apply knowledge of radioactive decay to quantitatively estimate the ages of objects.
Nuclear Energy - Fission & Fusion - Bumper lesson pack
cmorrison78515cmorrison78515

Nuclear Energy - Fission & Fusion - Bumper lesson pack

(0)
Lessons designed to build on prior knowledge of radioactivity and radioactive decay. Introducing and explaining fission of radioactive materials and fusion - includes practice questions for students. Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more Lesson 1/2 Developing: State the meaning of nuclear fission. Securing: Recall the basic design features of a nuclear fission power station and the location of the nuclear fission process. Exceeding: Recall the basic design features of a nuclear fission power station and the location of the nuclear fission process. Lesson 2/2 Developing: State the main differences between nuclear fusion and nuclear fission. Securing: Recall that fusion takes place naturally in the centre of stars. Exceeding: Evaluate in simple terms why nuclear fusion reactors are not used to produce energy in nuclear fusion reactors.
Radioactive Decay - Bumper lesson pack
cmorrison78515cmorrison78515

Radioactive Decay - Bumper lesson pack

(0)
Lessons designed to build on prior knowledge of nuclear radiation. Covers Alpha & Beta decay and half-life - includes practice questions for students. Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more Lesson 1/2 Developing: Describe the composition of different nuclei in terms of protons and neutrons. Securing: State that during alpha or beta decay the nucleus changes to that of a different element. Exceeding: Use equations involving nuclide notation to represent changes in the composition of the nucleus when particles are emitted. Lesson 2/2 Developing: Recall that nuclear decay is spontaneous and random. Securing: Describe what is meant by half life, in terms of number of nuclei and activity. Exceeding: Calculate half-life from data or decay curves from which background radiation has not been subtracted.
Nuclear Radiation - Bumper lesson pack
cmorrison78515cmorrison78515

Nuclear Radiation - Bumper lesson pack

(0)
Lessons designed to introduce and explain all areas on nuclear radiation, including their uses; background radiation; penetration and ionization levels - contains practice questions for students. Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more Lesson 1/2 Developing: Recall the main three types of nuclear radiation. Securing: Recognise the different properties of the main three types of nuclear radiation. Exceeding: Demonstrate knowledge of the influence of electric and magnetic fields on nuclear radiation through diagrams. Lesson 2/2 Developing: Demonstrate understanding of back ground radiation. Securing: Describe a method that can be used to detect alpha, beta and gamma nuclear radiation. Exceeding: Apply conceptual knowledge of back ground radiation to count rate problems.
Inside Atoms - Introduction to Atomic Physics - FREE Lesson
cmorrison78515cmorrison78515

Inside Atoms - Introduction to Atomic Physics - FREE Lesson

(0)
Lesson introducing and explaining what makes up atoms and isotopes - includes practice questions for students. Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more Developing: Describe the structure of the atom in terms of a positive nucleus and negative electrons. Securing: Recognise the distinguishing feature of isotopes. Exceeding: Apply knowledge of mass number to establish the identity of different elements.
Logic Gates - Bumper Lesson Pack
cmorrison78515cmorrison78515

Logic Gates - Bumper Lesson Pack

(0)
Lessons introducing and explaining the various logic gates with various work sheets. Ideal for Cambridge iGCSE P10 and more Lesson 1/2 Developing: Define what is meant by the terms analogue and digital in terms of continuous variation and high/ low states. Securing: Describe the action of AND, OR, NOT logic gates. Exceeding: Design simple circuits using AND, OR, NOT logic gates. Lesson 2/2 Developing: Define what is meant by the terms analogue and digital in terms of continuous variation and high/ low states. Securing: Describe the action of AND, OR, NOT logic gates. Exceeding: Design simple circuits using AND, OR, NOT logic gates.
Electronic switching - Full lesson
cmorrison78515cmorrison78515

Electronic switching - Full lesson

(0)
Lesson building upon the basics of electronics. Introducing and explaining the use of transistors in circuits. Ideal for Cambridge iGCSE P10 and more Developing: Draw and label the transistor circuit symbol. Securing: Recognise the transistor role as that of a processor in an electrical system. Exceeding: Show understanding of circuits operating as light-sensitive switches and temperature operated alarms
Electronics Essentials - Full Lesson
cmorrison78515cmorrison78515

Electronics Essentials - Full Lesson

(0)
Lesson designed to introduce students to electronics and circuit construction. Ideal for Cambridge iGCSE P10 and more Developing: Recall the three parts of all electronic systems. Securing: Summarise the differences between analogue and digital signals. Exceeding: Explain how alternating current is converted in to direct current
The National Grid - Full Lesson
cmorrison78515cmorrison78515

The National Grid - Full Lesson

(0)
Lesson building on knowledge of transformers and magnetic fields. Includes practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more. Developing: Recall and use the equation Ip Vp = Is Vs (for 100% efficiency) Secure: Describe the use of the transformer in high-voltage transmission of electricity. Exceeding: Explain why power losses in cables are lower when the voltage is high.
Transformers & mutual induction - Full Lesson
cmorrison78515cmorrison78515

Transformers & mutual induction - Full Lesson

(0)
Lesson designed to build upon prior knowledge of magnetic fields, motors and generators. Covers mutual induction, step up & step down transformers and the transformer equation - includes practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Developing: Describe the construction of a basic transformer with a soft-iron core, as used for voltage transformations. Secure: Understand that mutual induction occurs in coils that are magnetically linked. Exceeding: Apply the equation (Vp / Vs) = (Np / Ns) to transformer problems and recall the meaning of the terms “step up” and “step down”.
Generators - Application of right hand rule
cmorrison78515cmorrison78515

Generators - Application of right hand rule

(1)
Lesson designed to build on prior knowledge of Flemming’s rules. Introduces and explains simple AC generators - includes practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Developing: Distinguish between direct current (d.c.) and alternating current (a.c.) Secure: Describe and explain a rotating-coil generator and the use of slip rings Exceeding: Sketch a graph of voltage output against time for a simple a.c. generator and relate the position of the generator coil to the peaks and zeros of the voltage output
Electromagnetic Induction -  Bumper lesson pack
cmorrison78515cmorrison78515

Electromagnetic Induction - Bumper lesson pack

(0)
Lessons designed to build upon students knowledge of current and magnetic fields. Includes methods of increasing the rate of induction and Flemming’s right hand rule - contains practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Lesson 1/2 Developing: Show understanding that a conductor moving across a magnetic field or a changing magnetic field linking with a conductor can induce an e.m.f. in the conductor. Secure: State the factors affecting the size of an induced e.m.f. Exceeding: Describe an experiment to demonstrate electromagnetic induction. Lesson 2/2 Developing: Recall that an induced current always flows in a direction such that it opposes the change which produced it. Secure: Describe an experiment to demonstrate Lenz’s law. Exceeding: Predict the location of north and south poles of a solenoid’s magnetic field when a bar magnet approaches and recedes from the solenoid.
Electric motors - Full Lesson
cmorrison78515cmorrison78515

Electric motors - Full Lesson

(0)
Lesson designed to build upon prior knowledge of magnetic fields and electric current. Covers the motor effect and how to increase the strength of an electric motor - includes practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Developing: State that a current-carrying coil in a magnetic field experiences a turning effect and that the effect is increased by: – increasing the number of turns on the coil – increasing the current – increasing the strength of the magnetic field. Secure: Relate this turning effect to the action of an electric motor including the action of a split-ring commutator. Exceeding: Apply Fleming’s left-hand rule to determine the direction of rotation of a current carrying coil in a a magnetic field.
Magnetic force on a current - Full Lesson
cmorrison78515cmorrison78515

Magnetic force on a current - Full Lesson

(0)
Lesson designed to build on prior knowledge of magnets, magnetic fields and current. Introduces and explains Flemming’s Left Hand Rule and also the turning effect on a coil - leading up to motors in the next lesson. Contains practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Developing: Recall that a current carrying wire experiences a force in a magnetic field. Secure: Describe applications of current carrying wires in magnetic fields. Exceeding: Apply Fleming’s left-hand rule to real world situations.
Electromagnets and the uses - FREE Lesson
cmorrison78515cmorrison78515

Electromagnets and the uses - FREE Lesson

(3)
Lesson designed to build upon prior knowledge of current, magnets and magnetic fields. Covers creating an electromagnets; magnetic relay switches; magnetic storage (CD & Hard drive) and circuit breakers - includes practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Developing: Distinguish between the design and use of permanent magnets and electromagnets Secure: Describe applications of the magnetic effect of current, including the action of a relay and magnetic storage. Exceeding: Explain how electromagnets can be used in the production of circuit breakers
Magnetic effect of current - Full Lesson
cmorrison78515cmorrison78515

Magnetic effect of current - Full Lesson

(0)
Lesson designed to build upon prior knowledge of current and magnetic fields - includes practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Developing: State that a current in a wire produces a magnetic field Secure: Describe and sketch the magnetic field lines around a single wire/ loop Exceeding: Explain the magnetic field pattern around a solenoid using the right hand grip rule
Magnets and Magnetic Fields - Bumper lesson pack
cmorrison78515cmorrison78515

Magnets and Magnetic Fields - Bumper lesson pack

(0)
Lessons building on KS3 knowledge of magnets to explain where magnetism comes from. Includes ferrous and non-ferrous materials; domains; magnetic fields; inducing magnetism and de-magnetization - contains practice questions for students. Ideal for AQA GCSE (9-1) P7, Cambridge iGCSE P9 and more Lesson 1/2 Developing: Distinguish between magnetic and non-magnetic materials Secure: Describe the forces between magnets and give an account of induced magnetism Exceeding: methods of magnetization and demagnetization Lesson 2/2 Developing: Draw the pattern of magnetic field lines around a bar magnet Secure: Describe an experiment to identify the pattern of magnetic field lines, including the direction Exceeding: Explain that magnetic forces are due to interactions between magnetic fields