Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Calculate the stopping distance from the thinking distance and the braking distance
• Categorise factors which affect thinking distance, braking distance, and both.
• Calculate the braking distance of a car.
Students will:
Describe changes in particle bonding during changes of state.
Differentiate between latent heat of fusion and latent heat of vaporization.
Perform calculations involving specific latent heat.
Starter Activity:
Define key terms: specific heat capacity, internal energy, temperature.
Recall the formula for specific heat capacity.
Identify various changes of state.
Introduction to Concepts:
Define latent heat as the energy required for a phase change without a temperature change, focusing on overcoming intermolecular forces.
Differentiate between specific latent heat of fusion (solid ↔ liquid) and vaporization (liquid ↔ gas).
Discuss the role of energy transfer during state changes (e.g., energy input during melting and boiling, energy release during freezing and condensation).
Worked Examples and Practice:
Solve problems such as calculating the energy required to change a specific mass of a substance’s state using the formula.
Interactive Questions:
Use mini whiteboards for multiple-choice questions on changes of state, energy transfers, and misconceptions (e.g., whether temperature changes during state changes).
Recap key differences between specific heat capacity and latent heat.
Assign calculations for practice, such as determining energy transfer for melting ice or boiling water.
This lesson blends theory and practical calculations, preparing students for real-world applications of thermodynamic principles.
PowerPoint that covers the 5 energy stores, 4 energy transfers and the principle of conservation of energy. This is made for a KS3 level class.
Includes diagrams, questions, answers and a practical activity that can be done as a class or demonstration by the teacher.
Learning Objectives:
• Define what work is in a scientific context.
• Calculate the work done by a force.
• Use the equation for work done to calculate distances or size of forces.
Learning Objectives:
• Describe the energy transfers in a roller coaster and a pendulum.
• State that energy is conserved in any transfer.
• State that energy is dissipated (is no longer useful) when it heats the environment.
Learning objectives:
Describe what radioactive decay is and how it can cause ionisation.
Describe what background radiation is and its possible sources.
Describe the risks and health effects of using radioactivity and how to minimise them.
Learning objectives:
Describe the difference between magnetic and non-magnetic materials.
Describe the interaction of magnetic poles (attraction and repulsion).
PowerPoint that covers the following learning objectives:
Describe how drag forces and friction arise and identify examples.
Explain the effect of drag forces and friction in terms of forces.
Explain why drag forces and friction slow things down in terms of forces.
Includes questions, answers, examples, explanations and a practical opportunity including plasticine, cupcake cases and water.
This PowerPoint is designed to help students explore and understand the factors influencing specific heat capacity and how it can be calculated. Perfect for secondary school science lessons, this resource includes:
Starter Activity: Engage students with questions reviewing heat transfer concepts, such as conduction, insulation, and radiation.
Big Question: “What is specific heat capacity, and how is it calculated?” guides the lesson focus.
Key Definitions and Examples: Explain the concept of specific heat capacity with relatable analogies, such as why sand heats up faster than water.
Interactive Activities: Gap-fill tasks to reinforce key definitions. Questions analyzing materials with low or high specific heat capacities.
Calculations: Practice problems using the formula Q=mcΔT, with step-by-step guidance for solving specific heat capacity problems.
Discussion Points: Explore real-world applications, like why water heats up slower than metals and how mass affects heating time.
Plenary and Reflection: End with a plenary to revisit the big question and consolidate understanding.
This resource is ideal for supporting students in mastering thermal energy concepts while encouraging critical thinking and application.
PowerPoint that covers the following learning objectives:
Define the mass of an object.
Measure mass of an object using a mass balance.
Includes questions, pictures, instructions and a practical in which the students have to use mass balances to measure the mass of up to 20 objects.
There are questions that ask students to add masses of objects together, substract masses and work out the difference.
The results table, questions and space for answers are on the worksheet.
This is for a primary/early secondary class.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
PowerPoint that covers the following learning objectives:
Measure the temperature of a substance.
Plot a graph of temperature vs. time.
In this investigation, students will compare how a large beaker of hot water and a small beaker of hot water cool down differently. They will form a research question, hypothesis, fill in table of results, plot line graphs and form a conclusion.
PowerPoint includes research question, hypothesis, method, graphs and conclusion.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
This PowerPoint resource guides students through the investigation of the specific heat capacity of an object, focusing on key scientific methods and calculations. Designed to meet curriculum requirements, it includes:
Starter Activity: Questions to review the definition and formulae for specific heat capacity, as well as real-life applications (e.g., why a full kettle takes longer to boil).
Step-by-Step Practical Instructions: Setting up equipment, including a mass balance, immersion heater, thermometer, and electrical circuit. Recording data such as voltage, current, and temperature changes over time. Performing the experiment with and without insulation to explore energy loss.
Key Equations: Includes Q=mcΔT and E=IVt for calculating energy transfer and specific heat capacity.
Analysis and Interpretation: Discussion on the effect of insulation on reducing energy loss. Exploring the precision and repeatability of results. Extension ideas, such as testing different materials or types of insulation.
Graphical Representation: Opportunities to plot temperature vs. time and analyze trends.
Reflection and Method Writing: Students are encouraged to write a clear, repeatable method and reflect on the reliability of their results.
This resource is perfect for supporting students in mastering practical skills, data analysis, and understanding energy transfer concepts in a controlled, engaging environment.
This PowerPoint presentation provides a comprehensive lesson on internal energy for science students. It begins with an engaging starter activity to review foundational concepts such as specific heat capacity, energy transfer mechanisms, and kinetic energy stores. Key learning objectives include:
Defining internal energy as the sum of kinetic and potential energy of particles in a substance.
Exploring how heating affects a substance’s internal energy, temperature, and state of matter.
Differentiating between changes in kinetic energy and potential energy during state changes like melting, boiling, and freezing.
Understanding particle arrangements and movements in solids, liquids, and gases.
The presentation also includes interactive tasks like gap-fill exercises, diagrams, and detailed explanations of heating curves. Practice questions reinforce understanding and encourage critical thinking about energy transfer and particle behavior during heating and phase transitions.
Learning Objectives:
State how energy and temperature are measured.
Describe the difference between heat and temperature.
Describe how energy is transferred from one object to another.
Explain what is meant by thermal equilibrium.
Learning Objective:
Investigate which materials are good insulators of heat.
Method:
Set up your boiling tubes: leave one unwrapped and wrap each of the others in a different material, using elastic bands or tape to hold the material in place. Try to make the different wrappings roughly the same thickness.
Prepare lids for the containers, made out of the same material as the wrapping, if possible, otherwise made from aluminium foil or cling film.
Make a hole in each lid which is just big enough for the thermometer to fit through.
Use the measuring cylinder to pour 20ml of hot water into each boiling tube.
Put the lids onto the containers, with a thermometer fitted through each lid so that it rests near the bottom of the water.
Start the stopwatch and measure the starting temperature of the water.
After 15 minutes, measure the temperature of the water in each beaker.