I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
2 COMPLETE LESSONS ON NUCLEAR RADIATION.
A complete and detailed lesson on Radioactivity, focusing on the properties of alpha, beta and gamma radiation & a second lesson on uses of nuclear radiation (created with AQA and Edexcel specification content).
PROPERTIES OF NUCLEAR RADIATION
1) Review the characteristics of the 3 types of nuclear radiation.
2) Identify the penetrating power and range of type of radiation.
3) Explain what is meant by ionising radiation and relate to the three types and applications of this.
4) Compare and contrast the effect of magnetic and electric fields of nuclear radiation.
Pupils are prompted to post questions they have on nuclear radiation so far and in general which can be discussed by the class to serve as some recap on the previous lesson, deal with misconceptions and highlight progress when these may be answered during the lesson (and previous lessons).
Pupils recap the content of the previous lesson on the characteristics of the 3 types of radiation as this is important to the current lesson and exercises their knowledge on the subject.
Penetrating power and range of the types of radiation is covered in detail using animations.
Ionisation is reviewed by challenging pupils through questioning relating to previous content. This is then related to radiation and the types ability to ionise atoms. This lead to descriptions of photographic film and a detailed description of how the geiger-muller counter work with a bespoke animation to assist this.
Deflection of radiation is covered through questioning using clear imagery and animations to support pupils. This leads to literacy based task for pupils to compare and contrast different types of radiation and their path through an electric field.
The lesson is summarised with review questions on the content covered.
USES OF NUCLEAR RADIATION
1) Review the properties of the 3 types of nuclear radiation.
2) Identify that nuclear radiation can be dangerous and useful.
3) Explain in detail one or two applications of nuclear radiation.
4) Apply your knowledge of nuclear radiation to exam questions.
Applications explored in detail: geiger-muller counter, x-rays, badges, automatic thickness monitoring, traces, smoke alarms, carbon dating and uranium dating.
More Radioactivity lessons to come shortly.
GCSE AQA Physics lesson on Series Circuits using key content from AQA exam specification.
The starter for the lesson revisits models as a way of helping to explain principles of electric circuits. The model used is a simple model which you can do as a class activity or a class demo by simply using string with dots spotted around the string. This helps to summarise key terms before moving onto series circuit rules.
The string model is then used to help pupils explain key series circuit rules which are summarised.
The main uses a circuit experiment requiring the pupils to build 6 different simple circuits using ammeters and voltmeters, results can be drawn with circuit diagrams. (Support sheet included for pupils that may struggle drawing circuits).
Plenary uses a series of questions to apply pupil knowledge of series circuit rules.
Lesson Objectives:
1) Review key words for the electricity topic. (D)
2) Explain the current and potential difference rule for series circuits. (C)
3) Investigate current and potential difference in series circuits. (B)
4) Apply the series circuit rule to problems. (A)
Note: This lesson is formatted is similar content to previously listed 'Series Circuits' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
GCSE AQA Physics lesson on Parallel Circuits including key content from AQA Physics exam specification.
Starter uses 'Taboo' game to review the topic of electric circuits using cards in Taboo sheet, need cutting into cards beforehand.
Following recap of key electric terms an animated model is used to compare series and parallel circuits.
An experiment requires 6 simple parallel circuits to be built by pupils to investigate parallel circuits, this is then summarised. (Support sheet included for pupils that may struggle drawing circuits)
A collection of question applies parallel circuit rules to problems.
Plenary uses a written task in the style of a 6 mark exam question which can then be peer marked by pupils.
1) Review series circuits rules (D)
2) Explain the circuit rules for components in parallel circuits. (C)
3) Investigate potential difference and current in parallel circuits. (B)
4) Apply the parallel circuit rules to problems. (A)
Note: This lesson is formatted is similar content to previously listed 'Parallel Circuits' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
Complete GCSE Physics lessons on I-V Characteristics using key content from AQA Physics P2.
Starter provides a discussion of graph trends and what graphs tell us, this leads on to wider details of how to interpret graph results and key vocabulary.
Sometime can be spent getting pupils to plan an experiment to investigate I-V characteristics of different electrical components but you can choose to move straight to the guided investigation.
On collection of data for fixed resistors, diodes and filaments bulbs the class can plot their data on graphs.
Key data trends are summarised with explanations of trends for each component.
Exam style questions are provided in the relation the new specification.
Lesson finished with questioning on LDR's and thermistors with an activity which can be in class or for homework.
Lesson Objectives:
1) Identify relationships shown by graphs. (D)
2) Design & carry out an experiment to investigate the relationship between I & V for different electrical components. (C)
3) Explain how current and voltage vary for a filament bulb, diode and fixed resistor. (B)
4) Explain in detail what causes the current and voltage to change for key electrical components. (A)
Note: This lesson is formatted is similar content to previously listed 'I_V charasteristics' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
New GCSE AQA Physics lesson on 'Energy Demands & Resources (Fossil fuels, Nuclear Power & Biofuels)' written in line with new AQA Physics specification.
Starter uses a series of riddles for pupils to identify different energy resources to do with the lesson. The importance of fire is discussed for humans (this could also be linked with chemistry content on combustion, showing science links). Energy demands of the world are discussed and summarised to highlight what we need energy for and where it comes from in what proportions.
An Activity sheet included to identify key part of a fossil fuelled power station (although not necessarily required by AQA anymore).
Fossil fuels are covered in details and discussed the future issues with its usage, leading to Nuclear. Following description of Nuclear (with advantages and disadvantages) with an examiner tip in the note box - fossil fuels and nuclear power are contrasted.
Bio-fuels are reviewed as an alternative resources of energy and discussed a renewable and carbon neutral source.
Lesson concludes with a set of review questions on the topic which could also be used as a homework task.
Extra riddle question at the end.
Lesson Objectives:
1) Identify different ways of meeting our energy demands.
2) Explain how each major component of a fossil fuelled power station works..
3) Explain in further detail different methods meeting energy demands.
4) Discuss and compare the use fossil fuels, nuclear power and bio-fuels.
New GCSE AQA Physics lesson on 'Refraction of Light ' written in line with new AQA Physics specification.
Lesson Objectives:
1) Detail steps to investigate how light travels through materials.
2) Investigate how light travels through materials.
3) Describe what happens to waves when they travel through materials of different densities.
4)Draw ray diagrams to show refraction of light through a glass blocks.
5) Use knowledge of refraction to explain phenomena of light travelling between boundaries.
New GCSE AQA Physics lesson on 'Momentum' written in line with new AQA Physics specification.
Lesson Objectives:
1) State what momentum is.
2) Relate momentum to mass and velocity.
3) Calculate the momentum of an object with correct units.
4) Apply the conservation of momentum to 2 objects colliding or exploding.
New GCSE AQA Physics lesson on 'Moments, Gear and Equilibrium' written in line with new AQA Physics specification.
ALL ANSWERS TO QUESTIONS INCLUDED IN POWERPOINT
Starter poses the common question of how easy is it to open a door close to the hinge point which makes a very fun class demo and nicely leads into the lesson on moments,
A variety of simple devices that make use of levers is shown to identify what they all have in common which highlight they all produce a great turning effect/force.
Two experiments are provided to investigate either applied force and turning effect or distance from pivot and turning effect. This helps pupils identify the two contributing factors to moments and therefore the equation. A series of question practice use of the the moment equation.
Balanced moments and equilibrium is explained in relation to a see-saw and then explained with the equation allowing for review question to be completed. An exam question is provided also.
Further a small section on gears is included to relate the principles of moments to gears. Firstly pulleys are shown to make it more easily related to moments which is then directly shown with gears. The use of high gears and low gears with vehicles is explained. (I will revisit this aspect to integrate firmly into the main lesson).
Lesson Objectives:
- Define what is meant by a ‘moment’ and its units.
- Resolve simple moment problems with the moment equation.
- Explain how moments can be increased and how they can be useful.
- Apply the principle of moments to gears and their uses.
- Resolve moments in equilibrium.
NOTE: The lenses lesson (listed as lesson 4) had been missing from this bundle, this had now been rectified.
5 lessons covering the unit of Light and Lenses for AQA GCSE Physics.
Lesson include:
Reflection of Light (
Refraction of Light
Light and Colour
Lenses
Using Lenses
Please read individual resources descriptions for each item in the bundle for further detail.
New GCSE AQA Physics lesson on ’ Using Lenses’ written in line with new AQA Physics specification. All questions provided with answers within power point.
Lesson Objectives:
- Draw ray diagrams using lens symbols.
- Explain what is meant by the position and nature of an image.
- Detail how to find the position of an image formed by a lens using a ray diagram
- Construct ray diagrams to explain how lenses correct vision.
Complete lesson on Sound with key content from AQA Physics.
Starter uses simple task to get pupils thinking about how sound can be represented and how these may look like different sounds.
The lesson contains the bell jar and oscilloscope but as these often require a specialist or dedicated time to use links to on-line simulators are included which shows these very clearly and are easy to use.
The on-line oscilloscope allows you to change the frequency and amplitude of an audible sound the class can hear allowing you to question them on the wave changes and effects.
Also included is a short description and discussion of echoes.
End of lesson uses a written task for pupils to summarise the key points on volume and pitch. This can then be peer marked by the class using the guidance provided and then pupils can act on this feedback as homework.
More lessons to in same format for P1.
https://www.tes.com/member/Nteach
A fun christmas quiz to end term on.
Different rounds on general knowledge, tv & film, music, who is the celebrity santa, christmas riddles and pixelated objects.
New GCSE AQA Physics lesson on 'Resultant Forces ' written in line with new AQA Physics specification.
Lesson Objectives:
1) State what a resultant force is.
2) Explain what happens if the resultant force on an object is zero or not zero.
3) Formulate the resultant forces acting on an object.
4) Apply your forces knowledge to DANCE.
Complete lesson on thermal radiation and surfaces with key content from AQA Physics.
Starter includes picture prompts for key words from heat transfer topic.
Main includes experiment which requires some resources to be prepared with simple materials if not already available but can be easily produced.
Fun infra-red images of different objects and animals for a guessing game.
Plenary uses recent news item on LA reservoir to challenge pupil thinking.
Included are plenty of questions where some can be set as homework.
More lessons to in same format for P1.
https://www.tes.com/member/Nteach
A worksheet to help pupils design/plan their own experiment/investigation.
Some pupils still struggle with the intention of science experiments and each aspect required to carry out a successful experiment. The worksheet which is the same format as the experiment planning sheet poses each aspect as a question for pupils to really think what each aspect is about.
This can be used as sheet to complete with a guided experiment allowing pupils to understand what each part of planned experiment is about or it can be used as a guide to help a pupil design an experiment (with some guidance of course)
A complete and detailed lesson on Radioactivity, focusing on atomic structure, alpha particles, beta particles and gamma radiation. (created with AQA specification content).
Lesson Objectives:
- Recall and detail the basic structure of an atom.
- Relate number of protons, electrons and neutrons to mass and atomic numbers.
- Explain how atoms form ions & identify the isotopes of different elements.
- Explain radioactivity in terms of alpha, beta and gamma radiation.
The lesson guides pupils very clearly through exactly what radioactivity is by starting with the atom and so isotopes.
Starter prompts pupils to find the key words for the lesson using a ‘say what you see’ game.
Following a review of the atoms structure and properties through questioning. A task exploring the periodic table using relative atomic mass and atomic number familiarises pupils with these as they are important later.
Ions are reviewed through a task using visuals of atoms/ions to identify ions or atoms with appropriate charge. This then leads onto explaining what isotopes which can then be linked to unstable elements.
Radioactivity is then explained through a basic description relating to like charges of protons in the nucleus and the required binding energy to hold the nucleus together.
Alpha, Beta and Gamma are then reviewed with visuals of the process to relate to pupils clearly what happens.
A literacy task summarises and reviews the lesson.
Complete lesson on Reflection with key content from AQA Physics.
This lesson covers the law of reflection, ray diagrams and virtual images.
Starter uses a fun challenge to get class involved and thinking about reflection.
Reflection investigation practical with guidance on method and supporting practical sheet.
Law of reflection highlighted leading to drawing ray diagrams and also ray diagrams for virtual images.
Lesson includes some exam style questions which can be used as mini plenaries to link to exams.
Complete GCSE Physics P1 resourced in the same format available:
https://www.tes.com/member/Nteach
GCSE Physics P2 - Currents in Electrical Circuits (All lessons resourced)
A collection of complete lessons with guidance included for GCSE Physics P2 included key AQA content.
Lessons in consistent format all following on from each other with review on previous contents on previous lessons.
L1 - Static Electricity
L2 - Circuit Symbols (including current and charge)
L3 - Current, Voltage and Resistance, Ohm's Law
L4 - I-V characteristics (also LDRs and thermistors)
L5 - Series Circuits
L6 - Parallel Circuits
Review individual lessons in my shop for greater detail on each individual lessons.
A completely resourced lesson on GCSE Physics P2 - Electrical Power (E=Pt & P=IV) including key content from AQA exam specification.
Starter focuses on units and what they measure as a nice recap of all P2 units of measure.
Power and a key definition is provided is reviewed through relatable examples and then put into the context of electrical devices. Examples of calculating power from energy used and time are provided with a worksheet for this. Activity included for power rating circus is optional as alternatively another worksheet is provided allowing the exercise to be completed without a power rating circus.
Energy is then related to current and potential difference with the key equations and exercised with a worksheet.
Finally questions to identify appropriate fuse ratings for electrical devices.
More P2 lessons to come.