I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on the human immunodeficiency virus begins with a starter discussion on immunity and vaccination. Students should discuss the features of a successful vaccination program, and why vaccination cannot often eliminate a disease.
Students are then introduced to the structure of HIV and its function as a retrovirus. To explain the infection process students will watch a short video while answering questions in their books. Answers are available on the following slide for self-assessment.
The next task is a worksheet for students to label and correctly describe each stage of HIV infection and replication. They can self-asses to the next slide.
Students will then discuss the process by which HIV causes the symptoms of AIDS. The following slides explain the function of antibiotics and explain why these are not suitable for treating viruses.
In order to introduce the ELISA test, students will watch two short animations and answer questions in their books. Answers are on the following slide for self-assessment. They should take thorough notes in their book, on two diagrams of indirect and direct ELISA.
The plenary is to write a tweet demonstrating their learning, including #keywords!
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Scaling Up’ unit for the NEW OCR Gateway Biology specification.
Lessons include:
Diffusion
Osmosis
Active Transport
Mitosis
Cell differentiation
Stem Cells
Exchange & Transport
The Circulatory System
The Heart & Blood
Transport Systems in Plants
The Transpiration Stream
Factors affecting Transpiration
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson starts with pupils think > pair > sharing some of the advantages and disadvantages of genetic technologies that they have learnt about so far. Following this pupils will watch a selection of videos about genetic modification, pupils will need to listen and write down any advantages or disadvantages they pick up from the videos. For higher ability pupils you could extend this task by asking them to consider the organisations behind the videos and why they may have certain viewpoints.
Pupils will then be given a card sort in groups, the cards demonstrate concerns and benefits of gene technologies. Pupils can discuss the information and use it to finish off the table of advantages and disadvantages they started with the previous task. This task can be self-assessed using the mark scheme provided.
The next activity requires pupils to complete a newspaper articles on the pro’s and con’s of gene technologies, within the articles pupils must represent the viewpoints of an organic farmer, a charity campaigner, a doctor, an ecologist, a scientist working on a new gene technology.
The final activity is an exam-style question. Pupils can complete this in their books and self-assess their work once they are finished.
The plenary activity is for pupils to pick a task, either unscramble 5 anagrams to reveal key words or write a summary sentence including a number of key words from the lesson
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Organisation’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by pupils given a bit of information about the tissues which make up the lining of the stomach. They will need to read this information in pairs and then answer questions in their book, once completed the pupils can self or peer-assess their work using the answers provided on the next slide.
Pupils will then be introduced to the digestive system, it’s role and the organs involved with this system. They should be able to remember some information from previous lessons on organ systems (see ‘Principles of organisation’ in my shop!).
Now, pupils must read through another card of information in pairs and complete tasks on the board, these tasks will require pupils to label a diagram of a human body to show the locations of the major organ systems and also describe the function of these organs.
The next task is a video which pupils will watch and answer questions, list of questions is provided as a worksheet. Pupils will then self-assess their work using the answers provided after the video has finished.
The final activity is an exam-style question, pupils will answer this on the sheet and then mark their work using the mark scheme.
The plenary task is a word search challenge, there are 10 words associated with digestion in the word search. Pupils will race to complete against each other to complete the word search. You can award a prize if you have any :)
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed to meet specification points for the NEW AQA Trilogy ‘Organisation’ SoW within the Biology specification.
The lesson starts by a recap on knowledge covered in KS3, pupils are asked to put tissues, cells and organs in order according to size and complexity. Once the answer is revealed pupils are then given definitions of cells, tissues and organs and are will need to answer some questions about the differences between the three structures.
Pupils are then given the definition of an organs system and will then need to complete a brainstorm of the different types of organ systems they can think of. On the next slide pupils can self-asses their work using the list of organ system examples.
In the next activity, pupils will be given a list and diagrams of different organs, they need to write down which organs they think are present in the digestive system, respiratory system and the water transport system in plants. Once completed pupils can self-assess their work using the answers provided.
The next activity is for pupils to match the correct name of an organ system to the description of its function. Following self-assessment of this task pupils will need to complete a quick recap fill-in-the-blank task.
For the last activity pupils are given a card sort of names and diagrams for cells, tissues and organs. They will need to sort these into three columns and they can then self-assess their work.
The plenary task is a poster challenge - pupils get into groups and complete a poster of information on the topic of organisation as quickly as possible.
Thank you for looking :) any questions please leave a comment and I will get back to you! And any feedback would be appreciated.
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson begins with images of people who are obese, underweight or have a vitamin deficiency (e.g. rickets). Students are asked to ‘Think > Pair > Share’ their ideas about whether these people are malnourished or not? Students should have a few minutes to discuss their ideas, before sharing the class. The PowerPoint then moves on to identify that each of the individuals are malnourished, as they are either taking on too much/too little nutrients.
Students are now asked to consider how people might lose weight, students can create a mind map in their books. Once students have had a chance to discuss their ideas with the class, some ideas can be revealed so students can mark and correct their own work. This then follows into a ‘copy and complete’ task, where students should complete a set of sentences to summarise what they learned so far this lesson. This work can also be self-assessed using the mark scheme available.
Students should now complete the mid-lesson progress check, which is a ‘true or false’ activity. Students are given a set of statements, they should indicate using mini whiteboards/write down their answers in their books, the answers can then be revealed for students to check their answers.
Next, students are given a task which allows them to work out how much fat they are eating each week. Students can consider a list of statements, identify how many apply to them and add them up to give a rating out of 5, the higher the rating the more unhealthy their diet is.
Lastly, students are asked to write a letter to a person who is overweight/obese to give them some information about the health problems which are associated with being overweight and explain some methods which they could employ to help them to lose weight.
The plenary task is an anagram challenge, students are given a set of anagrams which are words associated with what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter discussion to review the enzymes needed for DNA replication and the process of DNA replication itself. Students are then asked to make a list in their books of all of the biological processes that require energy.
Students are then taught to think of ATP as an ‘energy currency’ and on the following slide asked to define the parts of the structure of ATP before reviewing ATP’s function. Students should use the ‘ATP handout’ to take notes.
The next task asks students to answer a few questions on their mini whiteboards and discuss with a partner how ATP releases energy. Answers for self-assessment are on the next slide.
The following slides explain the synthesis, roles, and properties of ATP. You will find further details for these slides in the ‘notes’ section under each slide. Students are then encouraged to ‘think > pair > share’ some ideas of why ATP’s properties might be useful to the role of ATP in cells. Answers for self-assessment are on the following slide.
Students are then given an activity task to demonstrate knowledge of energy-requiring processes. Each student will be given a description of a process, these can be found at the end of the slideshow, there are five processes in total. Students should then work in small groups to teach each other the different processes and produce a table to represent what they’ve learned.
After completing the lecture and tasks students are given four summary questions to answer in their books and self or partner-assess. Students should then make note of the summary slide before concluding the lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins by reminding students of the four general things that need to be exchanged between an organism and their environment and the three factors which may affect the rate of diffusion. This discussion leads into the first few slides which explain how an organism like an amoeba gets the substances it needs.
A worksheet is included for this lesson for students to complete as they take notes throughout.
An amoeba is used as an example of a unicellular organism, which is then compared to insects. The following slides explain the basic form and function of insects, then the process by which they exchange water and O2.
Students should take thorough notes on the spiracle, trachea and tracheoles in their books. The slides in this lesson are lecture based and very detailed, students will want to be sure they have a good understanding of the three ways that respiratory gasses move in and out of the tracheal system. The slides explain that gasses move along a diffusion gradient, through mass transport, and as the tracheoles fill with water.
A quick check of exam-style questions and mark scheme follows to help students assess their learning.
The plenary task is a true or false activity!
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Biology GCSE, particularly for the higher tier for the 'Infection & Response ' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by students being introduced to how bacteria are grown and then students will watch a video on the growth of bacteria, they will need to answer questions and then will assess their work using the answers provided. Using the information learnt from the video pupils will then need to fill out a method sheet to describe how you safely grow microorganisms on agar plates.
Pupils will then complete an exam-style question on what they have learnt so far as a mid-plenary and check their work.
(Optional practical activity: Instructions are given for pupils to now complete the practical to start growing cultures of bacteria on agar plates.)
The last half of the lesson will focus on mathematical skills related to working out the number of bacteria in a population. Pupils will watch a video to help them answer questions and then will need to complete questions by themselves, all answers are provided.
The plenary task is for pupils to summarise what they have learnt this lesson.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 13 lessons which meet all learning outcomes within the ‘Cell-level systems’ unit for the NEW OCR Gateway Biology specification.
Lessons include:
Plant and animal cells
Prokaryotic cells
Light microscopy
Electron microscopy
DNA
Transcription & Translation
Enzymes & Enzyme Reactions
Aerobic Respiration
Anaerobic Respiration
Photosynthesis
Products of Photosynthesis
Factors affecting Photosynthesis
Interaction of Limiting Factors
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This is a lesson aimed at the new AQA GCSE Biology (2016) - ‘Cells’ SoW.
The lesson begins by identifying examples of prokaryotic and eukaryotic cells, pupils can begin to think about the structural differences between these two types of cells.
Next, pupils are given a worksheet plus an additional card of information on either the structure or function of a bacteria cell. Pupils will need to walk around the room and trade the information on their card with others to fully complete a labelled diagram of a bacteria cell and descriptions of the functions for each structure.
Once completed pupils can peer or self-assess their work using the information within the PowerPoint slide.
The next activity requires pupils to apply their knowledge of the structure of bacteria (prokaryotic) cells and compare this to the structure of eukaryotic cells, pupils need to construct a list/table in their books to identify the similarities and differences between these two cells. Pupils can then self-assess their work against the list provided in the PowerPoint slide.
The next activity is an assessment activity, pupils will need to complete the past-paper question in their books and again self/peer-assess their work using red pens.
The final activity involves a list of ‘True/False’ statements, to gauge the progress of the class this could be completed by students holding up red/amber/green cards to identify whether they think the statement is true or false.
All resources are included in the PowerPoint presentation, please review to provide me with feedback :). Thank you.
This resource is designed to meet specification points in the new AQA Trilogy Biology ‘Cells’ SoW.
For more resources designed to meet specification points for the new AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with pupils shown a picture of an amoeba and one of a polar bear, they will need to discuss the difference between the organisms in terms of how they take in oxygen from their environment. Once you have shared a few ideas from the pupils with the class you can show the pupils the difference between the two organisms - amoeba can rely on simple diffusion whereas larger multicellular organisms need specialised exchange surfaces.
Pupils are then shown three examples of exchange surfaces - alveoli, small intestine and leaves of plants - they will need to think about how these structures might be adapted to exchange materials efficiently. You could have a short class discussion to develop these ideas.
Once you have again discussed these factors with the class you can reveal the next slide which outlines the 4 main features of an efficient gas exchange surface.
Pupils will then be given a worksheet and they will need to move around the room reading posters of information about villi and alveoli to complete the worksheet. This should take approximately 20 minutes, once finished pupils can peer-assess their work using the answers provided with the PowerPoint presentation.
The plenary is an Exit Card pupils will complete and pass to you on the way out of the door, this requires pupils to write down 3 key words, one fact and a question to test their peers knowledge of what they have learnt about in the lesson today.
This bundle of resources contains 11 lessons which meet all learning outcomes within the 'Inheritance, variation & evolution' unit for the NEW AQA Biology Specification.
Lessons include:
1. Meiosis
2. DNA & protein synthesis
3. Inherited disorders & genetic screening
4. Variation
5. Selective breeding
6. Genetic engineering
7. Ethics of gene technologies
8. Evolution by natural selection
9. Evidence for evolution - Fossils
10. Extinction
11. Evolution of antibiotic resistant bacteria
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed to meet specification points for the NEW OCR GCSE (Gateway) Biology 'Cell-level systems’ SoW.
For more lessons designed to meet specification points for the NEW Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by pupils being introduced to what an enzyme is, what it looks like and it’s role in the body.
Pupils will then watch a video and will need to answer questions (provided) whilst watching the video, they can self-assess their work using the answers provided.
Next pupils are shown a diagram of an enzyme’s lock & key mechanism in action, they will need to draw their own diagram of this process and include labels to show what is happening.
Next, pupils are introduced to the factors that can affect the rate of enzyme action. They are given a set of data on how temperature affects the rate of reaction. Pupils will need to plot this data onto a graph, they are then given a set of labels which they will need to match to certain points on their graph to describe what is happening.
In the next task pupils will need to complete sentences to explain the data that the graph is displaying, pupils can self-assess their work using the answers provided.
The very last task requires pupils to look at the effect of pH on the rate of enzyme action, pupils will need to think about the pH needed for enzymes in the stomach to work. They can discuss this question or come up with an answer themselves.
The plenary task is a fill-in-the-blank task for pupils to complete in their books, this can be self-assessed using the answers provided.
Any questions please let me know by leaving a comment, and any feedback is much appreciated :)!
This bundle of resources contains 7 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 8 B2 1.1 ‘Health & Lifestyle’ Unit.
Lessons include:
Nutrients & Food Tests
Unhealthy Diet
Digestive System
Bacteria & Enzymes in Digestion
Drugs
Smoking
Alcohol
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a introduction to the development of antibiotic resistant bacteria, this is looked at more closely with a video. Whilst watching the video pupils will need to answer questions, this work can be self-assessed using the marking criteria once complete.
Using the knowledge of how bacterial populations develop resistance to antibiotics pupils can complete a cartoon strip to demonstrate how this process occurs. Pictures for each stage will be provided, pupils will be required to complete the captions boxes for each depiction choosing from a list of key words to include.
The next part of the lesson focuses on preventing antibiotic resistance, pupils can draw a table in their books and in pairs or in groups will be given some cards of information on the different ways to prevent the development of antibiotic resistant strains of bacteria. Pupils will need to use this information to complete their table.
The last focus of the lesson is on the spread of MRSA within a hospital setting and how hospitals have responded to the crisis. Pupils will be given a set of newspaper reports, they should read them through in pairs or in groups and use them to answer a set of questions. Pupils can self-assess their work against the marking criteria once they have completed this task.
The final task is a set of exam-style questions on this topic, pupils of a higher ability should complete this task at the back of their book and try not use their notes to help them. Those students of lower ability can discuss the answers with their partner if necessary. Once completed students can use the mark scheme to assess their work.
The plenary task is for pupils to come up with three quiz questions to test their classmates knowledge of what they have learnt this lesson. If there is time you could ask some pupils to read out their questions for a mini-quiz at the end of the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a think > pair > share task where pupils will need to discuss the definition of ‘competition’. After revealing the definition for competition within the ecology context, pupils will then need to think about the types of resources that plants and animals compete for. They will be given a set of resources, they will need to sort these resources into two columns – those that animals compete for and those that plants compete for. Once this task is complete pupils can self-assess their work using the answers provided on the PowerPoint slide.
In the next activity pupils will need to draw a table in their books and they will watch a video on competition in a variety of organisms. Pupils will fill in their table by identifying the organism and then describing how it competes for the resource/s that it needs.
Pupils will then be asked to think about why animals and plants may want to avoid competition, pupils can discuss with their partner and write their answers in their books. The answers can be revealed using the PowerPoint slide. Pupils can mark and check their work.
The focus of the next part of the lesson is for pupils to consider how plants might avoid competition with other plants, pupils are asked to look at some pictures showing how plants avoid competition and students can discuss in pairs what they think the pictures are demonstrating. The answers to this task can then be revealed and pupils can check their answers, making any corrections where necessary.
The final task is an exam-style question on competition, pupils will answer the question in their books and can then self-assess their work using the mark scheme provided.
The plenary task is for pupils to summarise what they have learnt in three sentences, trying to use as many key words from the key word list provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 B1.2 Module on ‘Structure & Function of Body Systems’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with an activity whereby students are asked to sit quietly for a few minutes and think about what is happening to their bodies when they breathe in and out. Hopefully students recognise that their chest rises up as muscles contract and relax.
This then leads to a video, students should watch the video and whilst watching they will need to complete a fill-in-the-blank task which summarises what is happening inside the lungs during inhalation and exahalation. The answers to this task are included in the PowerPoint so students can self-assess their work once it is complete.
Next, students will be given a cartoon strip demonstrating the stages of both inhalation and exhalation, with some information missing. Higher ability students will be given a cartoon strip where they need to create captions for each diagram, lower/middle ability students will be required to fill in the blanks for each caption. The mark scheme for this task is included in the PowerPoint so students can self-assess their work once it is complete.
Next, the bell jar model is introduced which demonstrates what happens to the lungs during inhalation and exhalation. The teacher can conduct a demonstration using the bell jar model, students will need to come up with an explanation for what is happening when the teacher either pulls down on the rubber sheet or pushed upwards on the rubber sheet. Students can check their responses to this task using the answers included in the PowerPoint presentation.
The last slide shows students the practical apparatus that can be used to measure total lung volume in the lab, students can have a go at using this apparatus if there is time at the end of the lesson.
The plenary is a word search activity, students will need to find a list of words which are related to the breathing and gas exchange lessons.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.2 Ecosystem Processes.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson begins with an introduction to food chains, students will need to know the definition of the a producer and consumer. They are firstly asked to ‘Think > Pair > Share’ their ideas of a definition, before the answers are revealed.
Next, students are introduced to the process of photosynthesis, a description of the process is included, as well as a list of the raw materials needed for photosynthesis to occur.
Students will now watch a video on photosynthesis, during which students will need to answer a set of questions. This task can be self-assessed using the mark scheme provided.
Next, pupils will complete a progress check on what they have learned so far this lesson. Students will need to complete a set of questions in their books, these are exam-style questions which can be marked and corrected using the mark scheme provided.
Lastly, students will now watch another video on photosynthesis, with a set of questions that pupils need to answer about the theories surrounding photosynthesis over time. The very last activity require students to complete a sentences link-up task, to summarise what students have learned this lesson. This work can be self-assessed using the mark scheme provided.
The plenary requires students requires students to either write a twitter message to summarise what they have learned or complete a set of five quiz questions.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 B1.1 Module on ‘Cells’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with an introduction to cells as the building blocks of life and the smallest units found in living organisms, this is demonstrated with diagrams of animal and plant cells.
The scientist Robert Hooke is then introduced as someone who firstly coined the phrase ‘cell’ after observing plant tissue down a microscope, this leads into the main part of the lesson which is on microscopes.
Students will be shown a diagram of a microscope and are told some details of factors which should be considered when observing a specimen using a microscope. A video is then played which students need to watch in order to complete a ‘fill-in-the-blank’ task which summarises how to use a microscope and the main parts of the structure of a microscope. This task can be self-assessed using the mark scheme provided. Once this task has been completed it can be self-assessed using the mark scheme provided.
Next, students are shown how to calculate the total magnification of a microscope using the magnification of the objective lens and the eyepiece lens. Students will then need to work their way through a set of problems using this calculation. The answers to this task is included in the PowerPoint so students can mark and correct their work.
The last part of the lesson requires pupils to follow the instructions included in the PowerPoint to prepare an onion slide to then observe plant cells under the microscope. Once students have carefully prepared their slide they should observe the plant cells at a range of magnifications, sketching a diagram of their observations onto the worksheet provided
The plenary requires pupils to copy and complete sentences which summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)