Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

785k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Physics (2016) - Energy & Work
SWiftScienceSWiftScience

NEW AQA GCSE Physics (2016) - Energy & Work

(3)
This is a lesson aimed at the new AQA Physics GCSE module on 'Energy'. For more lessons within this series please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by introducing the concept of 'work done', by using the example of a person pedalling a bike. The first task the pupils will need to complete is to produce a mind map on activities which require work to be done in order something to happen. Pupils are then shown the equation to calculate work done and they can work through a model question. You can work through this question with pupils on the board or ask them to try and complete it in their books, then self-assess the work. The main activity for this lesson is a practical activity, the method for this practical is included in the PowerPoint presentation. Pupils will drag a wooden block across the desk a measured distance, the wooden block will be dragged initially with no elastic bands around it and then with one elastic band and finally with two elastic bands. Pupils will measure the force applied to drag the block using a Newton meter and record their results in a table (table included at the end of the PowerPoint). Using the measured distance and the force applied pupils can then work out the work done to drag each type of wooden block. The plenary activity is for pupils to complete a couple more work done calculations. All resources are included in the PowerPoint presentation.
NEw AQA GCSE (2016) Physics - States of Matter
SWiftScienceSWiftScience

NEw AQA GCSE (2016) Physics - States of Matter

(1)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Molecules & Matter ’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first activity of this lesson requires pupils to sort cards of information regarding particle arrangement, movement of particles and closeness of particles, into either solids/liquids/gases. Students will then need to copy and complete the table of information, this task can be self-assessed using the mark scheme within the PowerPoint presentation. Next, students are introduced to the kinetic theory of matter which applied to solids, liquids and gases. Pupils are given some information on the way particles in these three states of matter behave in relation to each other, particularly the speed/direction particles move in. Students will now need to watch a video on states of matter and will need to answer a set of questions, once this task is complete students can use the mark scheme provided to either self or peer assess their work. Using information from the video students will complete a diagram to show the transitions between different states of matter, students will need to match the correct process to the correct label on the diagram. Students can then mark their work using the answers provided. Lastly, students are introduced (or reminded of) the law of the conservation of mass and how this applies to changes of states of matter, before then completing a ‘Quick Check’ task which requires students to answer a set of questions based upon what they have learned this lesson. Again, the mark scheme for this task is included in the PowerPoint so students can assess and correct their own work. The plenary activity is for pupils to write a twitter message to summarise what they have learned this lesson. including #keywords from the lesson! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Specific Latent Heat
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Specific Latent Heat

(1)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Molecules & Matter’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a recap on ‘Latent Heat’, including a definition and task which requires students to sketch a temperature-time graph of ice which has been taken out of the freezer and heated at a constant rate for a period of time. They will then need to match a set of statements to stages shown on the graph, this task will then be self-assessed using the mark scheme provided. Students are then introduced to the idea of ‘Specific Latent Heat of Fusion’ - firstly students are given a description of what this tells us about a substance and then also the calculation. Students can take notes on this in their books, the next task then requires students to rearrange the equation they have been given to work out either energy (J) or mass (kg). Once students have discussed their ideas, the answers can be revealed and then pupils can work their way through a set of problems. This work can then be self-assessed using the mark scheme included in the PowerPoint. The next part of the lesson now focuses on ‘Specific Latent Heat of Vaporisation’ - students are again given a description of what this tells us about a substance and also the calculation is provided. Students can take notes and also try to rearrange the equation in order to make energy or mass the subject. Students can discuss their ideas, the answers are revealed and they will then use these calculations to work their way through a set of problems. Lastly, students will watch a video and will need to answer a set of questions whilst watching, this work can be checked against the answers provided. Then the very last task is a past-paper question on the topic, students can self-assess or peer-assess their work on this topic. The plenary requires pupils to write a WhatsApp message to a friend, explaining what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Nuclear Fission & Nuclear Fusion
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Nuclear Fission & Nuclear Fusion

(2)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson with a ‘Think > Pair > Share’ task where students will consider what they think may be happening during a ‘Nuclear Fusion’ or ‘Nuclear Fission’ reaction. Once students have fed back as a class discussion, the definitions for each process can be revealed using the PowerPoint. Students will now watch a video outlining the basic principles of these two processes, whilst watching the video they will answer a set of questions. Once this work has been completed they can self-assess using the mark scheme provided. Next, students are shown a diagram of a chain reaction, students will need to sketch a cope of this into their books alongside an explanation of this process in context of nuclear fission. The next activity requires students, in pairs, to teach each other about the principles of a nuclear reactor vs. fusion reactor, after being given a set of information on the topic. Students will then need to answer a set of questions into their books about these two types of reactors, the work can be self-assessed using the mark scheme provided. Lastly, students will complete a radioactivity crossword based upon knowledge they have learned throughout the radioactivity topic, the answers to this task is also included so pupils can mark their own work. The plenary requires students to complete a set of sentence starters to summarise what they have learned this lesson, what they already knew about this topic before the lesson and what they would like to learn more about. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Energy & Temperature
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy & Temperature

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy. The lesson starts with students asked to ‘Think > Pair > Share’ their ideas about what the difference between heat and temperature is. Students can discuss and then feed their ideas back to the class, the answers can then be revealed using the PowerPoint presentation. Students will now watch a video, recapping on particle theory, whilst watching students will need to answer a set of questions, this task can be marked and assessed using the mark scheme included in the PowerPoint presentation. Next, students are asked to consider what affects the amount of energy stored in something. Students will be given an example of a glass of water and a swimming pool full of water, both at 28 degrees celsius. Once students have had a chance to discuss, the answers will be revealed and students will then need to complete a set of questions on this topic. The answers for this task are included so students can self-assess their work using the mark scheme provided. Lastly, students are asked to sort a a set of diagrams out from those that will store the most amount of heat energy to those that will store the least amount of energy, given the description. The plenary task requires students to pick a plenary - either summarise what they have learned in three sentences or write a list of definitions for a set of key words included. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Electrical Charges & Fields
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Electrical Charges & Fields

(0)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to the structure of the atom, students will be asked to identify the sub-atomic particles on a digram of an atom. This then leads into a task whereby students are asked to label a diagram of an atom and complete a fill-in-the-blank task, the answers to this are included in the PowerPoint presentation. Next, students will complete a ‘memory test’ task where they will be given some information about the charges and relative masses of an electron, proton and neutron. They will be given a short time to remember this information before then having to copy it up from memory, their work can then be self-assessed using answers provided. Students will now complete a mid-lesson progress check to assess their understanding of what they have learned so far this lesson. The next part of the lesson focuses on static charge, students will firstly watch a video about static electricity, during which they will need to answer a set of questions. Once complete this work can be self-assessed using the mark scheme provided. Next, students will complete a fill-in-the-blank tast to summarise what they have learned so far, this work can also be self-assessed using the answers provided. The PowerPoint moves on to then explain how static charge is a non-contact force and a diagram is shown of an electric field of a charged object, students need to understand how two objects with opposite charges are attracted to each other. The final task is a past-paper question on the topic of static charge, students can complete this task on the worksheet provided (higher ability students may want to complete this without their notes) and then the task can be self-assessed using the mark scheme. The plenary task requires pupils to write a Whatsapp message to their friends explaining what they have learned this lesson!! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics  - The Development of the Nuclear Model
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - The Development of the Nuclear Model

(0)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a video about the developments in the atomic model starting from Greek philosophers to 20th Century scientists. Pupils are given a set of questions to answer whilst watching the video, this work can be self-assess using answers provided. Next, pupils are given a set of cards with bits of information about different scientists involved in the development of the model of the atom. Pupils should put these cards in order and then use the information on the cards to formulate a timeline in their books, they should use the information on the cards to add labels describing the work of each of the scientists. Students will now be shown a video on ‘Scattering Experiments & the Development of the Nuclear Model’ - students will need to answer a set of questions whilst watching the video. The answers to the video are included in the PowerPoint so students can self-assess their work once it is complete. A diagram of the ‘Gold Foil Experiment’ is then shown to pupils, along with a summary of conclusions drawn from this investigation. Students will then be given a worksheet to complete, summarising the findings of this investigation and how it contributed to the development of the Nuclear Model of the atom. The mark scheme to this task is also included in the PowerPoint for pupils to assess their work. The plenary task is a word search, students will need to find a list of key words on the topic of ‘radioactivity’. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
Home Learning Pack ~ KS3 ~ Year 8 ~ Electricity & Magnetism
SWiftScienceSWiftScience

Home Learning Pack ~ KS3 ~ Year 8 ~ Electricity & Magnetism

(0)
This is a homeschool pack designed for the KS3 Year 8 Science course, specifically the ‘P2.1 Electricity & Magnestism’ unit of work. For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This comprehensive pack contains eight pages of information, to meet learning objectives within the Year 8 ‘Electricity & Magnetism’ unit of work. This is followed by three pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers. The pack covers the following topics: Charging Up Current & Charge Potential Difference Resistance Series & Parallel Circuits Magnetism & Magnetic Fields Electromagnets Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
KS3 ~ Year 7 ~ The Earth
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Earth

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P4 ’Space’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the idea of the Earth spinning on it’s axis, which gives us day and night. This is demonstrated to students using a diagram, they can take notes on this and also draw a sketch of the Earth spinning on it’s axis. Students will then watch a video on Earth and the way that it moves to give day/night and the different seasons. Students will answer a set of questions whilst they are watching the video, once complete the task can then self-assessed using the mark scheme provided. Next, students are shown a diagram which demonstrates the reason why in the summer the UK is hotter and longer days, whereas in the winter the UK is older and has shorter days. Again, students could take notes on this and sketch a diagram in their books to demonstrate this process. The next activity requires students to use an array of resources - beach ball, balloon, torch, marker pen - to demonstrate the orbit of the Earth around the Sun to explain why we have seasons. Students will now complete a worksheet which will assess their knowledge of what they have learned so far this lesson. The mark scheme for this task is included in the PowerPoint so students cans self-assess their work once it is complete. The last activity is a summary task, students should copy and complete the sentences to summarise what they have learned so far this lesson. The work can be self or peer assessed using the mark scheme provided once this students have completed it. The plenary activity requires students to write a Whatsapp message to a friend about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Forces At A Distance: Non-Contact Forces
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Forces At A Distance: Non-Contact Forces

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with a recap activity, students will need to sort a list of forces into two categories: contact and non-contact forces. This task can the be self-assessed using the mark scheme provided. Next, students will recap on the non-contact forces that they have already learned about: gravitational forces, magnetic forces & electrostatic forces. Students will the be asked ‘What is a Force Field’ - they will then need to ‘Think > Pair > Share’ their ideas. After a short class discussion, the answer can be revealed to students and they could take notes on this in their books. Students will carry out an investigation which helps them to visualise the force field which surrounds a magnet. Students will place small compasses at pin-point positions surrounding a bar magnet. They will need to draw an arrow to represent the direction that each compass is facing, lines can be drawn between each position which will show the overall force field of the bar magnet. This task can be self-assessed using the mark scheme provided on the PowerPoint. Next, students are told the difference between weight and mass, they are also given the calculation for the weight of an object when you are given the gravitational field strength of the planet the object is found on, plus the mass of the object. Using this calculation students will then need to complete a set of questions on weight & mass, once complete students can self-assess their work using the mark scheme provided. The last task is a ‘Progress Check’ task, whereby students will copy and compete the paragraph of information to summarise what they have learned this lesson. The plenary task requires students to write a twitter message to sum up what the students have learned in the lesson, they will need to try to #keywords. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
**BIG BUNDLE** KS3 ~ Year 7~ Physics Lessons
SWiftScienceSWiftScience

**BIG BUNDLE** KS3 ~ Year 7~ Physics Lessons

(0)
This resource contains 19 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 Physics Units: P1.1 Forces P1.2 Sound P1.3 Light P1.4 Space The resources were designed with the Year 7 Activate course in mind, it contains 6-8 weeks worth of lesson content!! You can find more lesson bundles aimed for the KS3 and KS4 science curriculum at: https://www.tes.com/teaching-resources/shop/SWiftScience All lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW KS3 ~ Year 7 ~ Sound
SWiftScienceSWiftScience

NEW KS3 ~ Year 7 ~ Sound

6 Resources
This bundle of resources contains 5 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 P2 ‘Sound’ Unit. Lessons include: Waves Sound & Energy Transfer Loudness & Pitch Detecting Sound Echoes & Ultrasound The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
KS3 ~ Year 8 ~ Pressure on liquids
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Pressure on liquids

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Motion & Pressure’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated.
KS3 ~ Year 8 ~ Energy Resources
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy Resources

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a video about the formation of fossil fuels and the impact of these energy resources on our environment. Students will watch the video and will need to answer a set of questions, once this task has been completed students will self-assess their work using the mark scheme provided. Next, students considering which of the energy resources are renewable or non-renewable. Students will then use the posters, which can be placed around the room or on pupils desks, to complete a table which identifies how the energy resource generates electricity and the advantages and disadvantages of each energy resource. Students are then given a list of statements about all power stations which they need to cut and stick (or write) into two columns - advantages or disadvantages. To challenge higher ability pupils this could be completed at the back of students books, so they cannot use information from the previous task. Pupils can then peer-assess their work. The plenary activity is for students to summarise what they have learned this lesson three sentences. All resources are included. Please review, I would appreciate any feedback :). Thanks! All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Energy & Work
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy & Work

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by introducing the concept of ‘work done’, by using the example of a cyclist on a bike. The first task the pupils will need to complete is to produce a mind map of activities which require work to be done in order for something to happen. Students can discuss their ideas with their partners, they can write their ideas down into their books and then check their work against the answers provided in the PowerPoint. Pupils are then shown the equation to calculate work done and they can work through a model question. You can work through this question with pupils on the board or ask them to try and complete it in their books, students can then self-assess their work. The main activity for this lesson is a practical activity, the method for this practical is included in the PowerPoint presentation. Pupils will drag a wooden block across the desk a measured distance, the wooden block will be dragged initially with no elastic bands around it and then with one elastic band and finally with two elastic bands. Pupils will measure the force applied to drag the block using a Newton meter and record their results in a table (table included at the end of the PowerPoint). Using the measured distance and the force applied pupils can then work out the work done to drag each type of wooden block. Students will now complete a ‘quick check’ task whereby students will need to complete a set of problems on ‘work done’ calculations. Once complete, students can self-assess their work against the answers provided. Finally, students are given a worksheet of problems which have been completed by another pupil. Students will need to mark and correct the work, making corrections where necessary. This task can then be marked and assessed using the mark scheme provided. The plenary task requires students to write a twitter message to explain what they have learned today, including #keywords. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Electrical Circuits
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Electrical Circuits

(0)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction into how to draw electrical circuit diagrams, a diagram is shown and students need to identify the correct components using the labels provided. The next part of the lesson focuses on the roles of different electrical components, students will each be given a different piece of information about a component. They can then walk around the room, sharing information with each other in order to complete a table on the components and their roles. This work can then be self-assessed once students have completed it. The next task will assess students understanding of these components in a ‘Quick Check - Who am I ?’ task. Pupils will need to identify the component from the description given, they can write their answers in their books and then check their work against the answers when they are revealed. Pupils will the be reminded of the rules on how to draw a circuit diagram, before being given a list of descriptions of different circuits. Students need to draw the circuits that are being described, the answers to this task can then be revealed using the mark scheme in the PowerPoint presentation. The last part of the lesson will require pupils to construct electrical circuits using electrical equipment, three diagrams of electrical circuits are provided to students, they need to use these to construct their own circuits. The plenary task requires pupils to complete a word search, once the words have been found they should write a definition of each of them All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics  - Current-Potential difference Graphs
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Current-Potential difference Graphs

(2)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to the term ‘Ohmic conductor’, students are also shown a current-potential difference graph for a wire to demonstrate that in an Ohmic conductor the current is directly proportional to the potential difference. Students will then conduct an investigation into whether the length of a wire will effect the resistance within the wire, students will complete the investigation using the method and once finished should draw a graph of their results and write a conclusion to summarise their findings. This work can be checked against answers provided within the PowerPoint presentation. Next, students are shown a current-potential difference graph for a filament lamp and a diode. Students will be given a graph along with a set of questions to answer about these two graphs, once this task is complete students can self-assess their work using the mark scheme provided. Students are then shown a diagram of a thermistor and light-dependent resistor and provided with an explanation of what happens to the resistance of these two components when the temperature and light are increased, respectively. The last task is a past-paper exam question, those higher-ability students should try and complete these questions without looking at their notes. Once complete, the work can be either self or peer assessed using the mark scheme provided. The plenary task requires pupils to complete one of the sentence starters to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
Home Learning Pack ~ KS3 ~ Year 7 ~ Space
SWiftScienceSWiftScience

Home Learning Pack ~ KS3 ~ Year 7 ~ Space

(0)
This is a homeschool pack designed for the KS3 Year 7 Science course, specifically the ‘P1.4 Space’ unit of work. For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This comprehensive pack contains four pages of information, to meet learning objectives within the Year 7 ‘Space’ unit of work. This is followed by three pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers. The pack covers the following topics: The night sky The Solar System The Earth The Moon Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
KS3 ~ Year 7 ~ Squashing & Stretching Forces
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Squashing & Stretching Forces

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson starts with a recap on the differences between contact and non-contact forces. Students are given a list of forces and a variety of pictures, they need to match the correct name of the force with the correct picture and decide whether this is a contact or non-contact force. This task can self-assessed using the mark scheme provided. Students are now introduced to the concept of a ‘reaction force’, with examples of a ball hitting the floor and a person walking along the ground. Students are shown a particle diagram to demonstrate what is happening. Next, students are introduced to the idea of an elastic cord or spring being affected by ‘extension’ and ‘tension’ forces. To assess students knowledge of what they have learned so far they will complete a progress check, a set of questions which students can answer in their books. This task can then be self-assessed using the mark scheme provided. The last part of the lesson will look at Hooke’s law, students will conduct an investigation where they will investigate Hooke’s law. This practical involves students adding 1 Newton weights to a hanger which is attached to an elastic band. Every time a new weight is added, the distance between two marked point on the elastic band is measured. Students should carry out the investigation, record their results in a the table and then plot a graph of their results. Hopefully, students will draw a linear graph and be able to identify what Hooke’s law is from their results. Students can check their work against the results provided in the PowerPoint. Finally, students are asked to complete a ‘Sentence Link-Up’ task, this is a literacy task which requires students to link three words in a summary sentence. This work can be self-assessed once it is complete using the answers provided on the PowerPoint. The plenary requires students to write three quiz questions to test their knowledge of what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ The Night Sky
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ The Night Sky

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a short video about light-years, students will watch the video and will need to answer to two questions whilst watching. This task can then be self-assessed using the mark scheme provided. Next, students will now each be given a piece of information about an object which is visible in the night sky - comets, meteors, planets (some!) and satellites. Students will need to swap information with people around the room in order to complete a summary table. Once complete students can use the mark scheme provided to self-assess their work. Next, students are introduced to the definitions for the terms ‘galaxy’ and ‘Universe’, which students could take notes on. Now students will complete a progress check, which is a set of questions aimed to assess students knowledge of what they have learned so far this lesson. This task can be either peer-assessed or self-assessed using the mark scheme provided. Lastly, students will be asked to create three quiz questions (which they should know the answers too!) to test their peers knowledge of what they have learned this lesson. If there is time, students can then read some of their questions out and ask particular students in the class. The plenary activity is an anagram challenge, students are given a set of anagrams of key words learned this lesson. The answers are provided to check they are correct! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)