I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW and for higher tier pupils.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an outline of the sorts of stimuli that plants response to - light, moisture & gravity - pupils are asked to think > pair > share why they think that it is important that plants respond to these stimuli.
Pupils are then introduced to the term ‘tropism’ and are shown the sort of tropisms plants undergo due to light and gravity. Pupils will then watch a video on this topic and will need to answer questions whilst watching, this work can then be self-assessed once they have finished the video.
Pupils will then be provided with posters of information which outlines the role of auxins during phototropism and gravitropism, using this information pupils will need to complete tasks on their worksheet. Once this task has been completed pupils can either self or peer-assess their work using the mark scheme provided.
The final activity is an exam-style question which pupils should complete in silence and as an extra challenge they could try and complete it in the back of their books, not using any notes from the lesson. The work can then be self-assessed using the mark scheme provided.
The plenary task is for pupils to summarise what they have learnt in three sentences, using the list of key words provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 6 lessons which meet all learning outcomes within the 'Rates of Reaction’ unit for the NEW AQA Chemistry Specification.
Lessons include:
Rates of reaction
Reversible reactions
Rate of reaction: The effect of catalysts
Rate of reaction: The effect of concentration & pressure
Dynamic equilibrium & altering conditions
Collision Theory: The effect of temperature & surface area.
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Students will firstly be shown a set of images, students will have to decide which are examples of an alkali/base and which are examples of acids. Next, students will watch a video on acids/alkalis and will need to answer a set of questions, after which they can self-assess their work using the mark scheme provided.
The next part of the lesson focuses on pH, students are firstly reminded of the importance of the pH scale and will then need to complete an investigation to identify the pH of different substances. Students can use the practical sheet provided to complete this task, including the results table to record their results.
The next part of the lesson looks at the difference between concentrated and dilute solutions, in terms of particles and in terms of risk/hazards when handling concentrated acids. Students will then need to summarise what they have learned with a fill-in-the-blank task, this work can be self-assessed using the mark scheme provided.
The final part of the lesson pupils will focus on the difference between strong and weak acids in terms of ionisation. Students will also look at how pH values are related to the concentration of H+ ions, students will need to copy and complete a table to show the concentration of H+ ions per mol dm3 for each pH value, this work can then be self-assessed using the mark scheme provided.
The plenary task is a ‘Pick a plenary’ task - pupils will need to either write a twitter message to summarise what they have learnt or write 5 quiz questions on the topics studied in the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Earth’s Atmosphere’ unit for the NEW AQA Chemistry Specification.
Lessons include:
The History & Evolution of Our Atmosphere
The Greenhouse Effect
Global Climate Change
Atmospheric Pollutants
The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
PowerPoint and task cards aimed at a KS3 class (initially planned for Year 9) to complete a poster, written assignment and a model for a specific area of Science to present in a Science Fair.
For each of the task cards a detailed list of requirements for each part of the project is included, with ideas for extension work to earn more points and homework ideas as well.
I used this resource straight after my students had completed their end of year test as a fun and engaging activity, when complete pupils presented their projects to the class and I awarded certificates for best written assignment, best poster, best model and best overall project.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to fossils, a definition of a fossil and a task for pupils to think > pair > share how the remains of dead organisms could be preserved for millions of years. After a short classroom discussion about the ideas pupils have come up with, pupils can move on to the next task. Pupils will each be given a different piece of information on the ways in which fossil remains can be preserved. Pupils can move around the room and discuss their cards of information and use each others to take notes on these processes.
Pupils will then watch a video on how fossils are formed, using this video pupils will need to answer questions in their books. This work can be self-assessed using the marking criteria provided.
The next part of the lesson focuses on why fossils do not provide a complete record of evolution. After this has been explained, using the information and images provided on the PowerPoint slide, pupils can complete some quick check questions on what they have learnt this lesson. Once complete pupils can mark their work using the answers provided.
The final task is for pupils to complete a table to demonstrate the evolution of the horse, they will each be given a card of information on a particular stage of evolution. They can use each other to complete the full picture of how the horse evolved, completing their own table in chronological order.
The last task is a set of exam-style questions on what pupils have learnt this lesson, they can answer these at the back of their books for an extra challenge. A mark scheme is provided for pupils to assess and correct their work once it is complete.
The plenary task is for pupils to summarise what they have learnt this lesson as three facts, three key words and a question to test their peers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy.
The lesson begins with a ‘Think > Pair > Share’ task whereby students are asked to think about why explorers need some large quantities of energy? What foods would provide them with such daily energy requirements? Students should have the covered the ‘Diet & Nutrients’ topic in Biology by this point, so after a short discussion in pairs they can feed their ideas back to the class and the answer can be revealed.
Students will now be provided with a set of food labels, if possible they should also be allowed access to the Internet via phones/laptops, using these tools students should estimate their daily energy intake, compare this with others and then make a list of all the ways their body might use this energy.
This follows into a task whereby students will look at activities, students will need to place these activities in order from most energy intensive to least energy intensive. Once complete, students can assess their work against the answers provided in the PowerPoint presentation.
Students are now provided with a set of data on the energy required to perform a range of activities for one hour. They will firstly need to plot this data onto a bar graph, they will also need to answer a set of questions. The mark scheme for this task is included in the PowerPoint presentation so students can self-assess their work once it is complete.
Lastly, students will complete an investigation into the energy content within food. The practical worksheet is included, students can collect the equipment listed and follow the steps in the method to fill in the results table in their books. Once complete, students should answer the summary questions.
The plenary task requires students to write a twitter message to their friends, including #keywords.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a description of the new field of nanoscience and the types of industries where this may be important. Pupils are then given a set of questions which they must complete using a video, once the students have answered the questions they can assess their work using the mark scheme provided.
Pupils will now focus on the importance of surface are to volume ratio when considering nanoparticles, students will calculate the surface area to volume ratio of a cube that is 100cm x 100cm, 10cm x 10cm and 1cm x 1cm. By doing this they can see that the smaller the particle the higher the surface area to volume ratio, this is an important property in nanoparticles - particularly for their use as catalysts. Students are then asked to prove that the same applies for a cube that is 10m x 10m and 0.1cm x 0.1cm. All work from these tasks can be self or peer assessed using the answers provided in the PowerPoint presentation.
The next part of the lesson is a task for pupils to consider the application of nanotechnology, pupils will each be given a card of information describing one application of nanoparticles. They will need to walk around the room and discuss the applications with each other to complete a table in their books.
The last task is for pupils to consider the potential risks involved with the uses of nanoparticles in everyday products, students should think > pair > share their ideas about how the industries using nanoparticles might be posing risks to people and the environment. Once the class has discussed these potential risks you can outline some examples using the PowerPoint presentation.
The plenary is for pupils to pick a task, either write a twitter message or summarise what they learnt in the lesson in three sentences.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise.
Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse.
The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided.
The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete.
The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins by introducing pupils to the definition of a clone and outlining the different cloning techniques they will learn about in this lesson.
Pupils will firstly learn about two techniques used to clone plants - cuttings and tissue culture. Pupils will learn about these two techniques and will need to complete the correct descriptions on a diagram demonstrating the steps involved with taking plant cuttings. Once this is complete the work can be self-assessed.
The second part of the lesson focuses on adult cloning. Firstly pupils are talked through the process of embryo transplants using a diagram. Pupils will be provided with a worksheet with a flow diagram of the embryo transplant process but missing statements to describe the process. Pupils will need to choose the correct statements to go in these boxes, this work can be assessed using the answers provided once complete.
Adult cell cloning is the other example of an animal cloning technique pupils will need to describe. Firstly, pupils will watch a video about Dolly the sheep and the adult cell cloning process, using this video they will need to answer some questions. This can be checked against the answers which will be provided.
For the next activity pupils will be provided with the diagram of the sequence of events involved in the adult cell cloning process, pupils will be required to fill in the blanks to complete the descriptions of the steps involved. Once completed pupils can use the mark scheme to assess their work.
The final activity focuses on the risks and benefits of adult cell cloning, pupils will be given a list of opinions about this cloning technique and they will need sort them into advantages/disadvantages in their books.
The plenary activity is for pupils to pick a task: either write a twitter message about what they have learnt this lesson or unscramble anagrams to spell out 5 key words from the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson begins with an introduction to the idea of a ‘food pyramid’, students will be given a selection of different foods and will need to consider how often they should be eaten, and so where on the food pyramid they should be placed. Once students have had chance to discuss and arrange their foods on the food pyramid, the answers can be revealed so students can check their work.
Next, students are introduced to the idea of different food/drink groups: carbohydrates, protein, fats, vitamins, minerals, water and fibre. Students will each be given a card of information about one of these groups, they will need to walk around the room to share information with their peers in order to complete the summary table in their books. This task can be self-assessed using the mark scheme provided once it is complete.
Next, students will consider how much energy different people require. Firstly, some examples will be talked through as a class - e.g. males generally need more energy than women, older people need less energy than younger people etc. Students will then complete a task to assess their knowledge on this topic, which can be marked and corrected using the answers provided once complete.
Lastly, students will be introduced to the idea of a food test, they will be asked to consider which types of nutrients are present in a set of food which include: lemonade, crisps, margarine, bread & meat. After students have made predictions, they can then complete the food test investigation (equipment list and method is included).
The plenary task requires students to spend a minute or two talking about what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 9 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Homeostasis’ unit for the NEW AQA Biology Specification.
Lessons included:
1. The brain HT
2. The eye HT
3. Common problems of the eye HT
4. Plant hormones & responses HT
5. Using plant hormones HT
6. Controlling body temperature HT
7. Removing waste products HT
8. The kidney HT
9. Dialysis & kidney transplants HT
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C1.1 ’Particles & their Behaviour’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson begins with an introduction to the process of diffusion, spraying perfume particles in the air is used as an example. Students are shown, by way of a particle diagram, how particles spread from an area of higher concentration to a lower concentration. Students are now asked to ‘copy and complete’ a paragraph to define the process of diffusion, this task can be assessed using the answers provided.
Next, students will need to sketch diagrams demonstrating the various stages of diffusion, and will need to match the correct statements to the correct diagrams. This work can be then be self or peer assessed using the mark scheme provided.
The next part of the lesson looks at factors that affect diffusion, students are firstly asked to ‘Think > Pair > Share’ their ideas on the factors which might affect the rate of diffusion. After students have fed back into class discussion, the answers are revealed for students to note down in their books. They will then look more closely at the effect of temperature on the rate of diffusion by watching a video and then summarising what they have learned by completing a fill-in-the-blank task.
Two other factors which affect the rate of diffusion are particle size and state of matter. Students are shown a diagram and given an explanation for how particle size affects the rate of diffusion - the heavier the particle the slower it is to diffuse. Students are then asked to consider whether particles will diffuse more quickly in the gaseous state, compared to liquid or solid state. Their answers can be discussed in pairs before feeding back to the class, the answers can then be revealed using the mark scheme provided.
Lastly, students will need to explain, in terms of particles, why a solid is unable to undergo diffusion whereas a gas and a liquid are able to.
The plenary activity requires students to write down 3 facts and 3 key words from the lesson and pose one question to test their peers on what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of the lesson focuses on outlining the importance of carbon within the living world, where we might find it in our bodies and the world around us. The first task pupils will be asked to complete is a mind map of the processes they think will add or remove carbon dioxide from our atmosphere. Pupils can discuss in pairs and once complete the answers can be revealed for pupils to assess their work.
The next task is for pupils to watch a video about greenhouse gases, there are a set of questions pupils will be given which they need to answer whilst watching the video. Once this task is complete pupils can assess their work using the answers provided.
The next task is a fill-in-the-blanks task, pupils are given a paragraph about the role of carbohydrates in animals and plants, they need to complete this using the key words provided. Once completed pupils can assess their work using the answers provided.
Pupils will then watch a video about the carbon cycle which details the process involved, once the students have watched the video they will be given a worksheet which they need to complete using the captions provided on the PowerPoint slide. Lower ability students may want to complete this as a group & could perhaps complete whilst the video is playing to assist them. Once they have completed the task pupils can self-assess their work using the answers provided.
The next task may be better suited to higher ability pupils, a set of cards images and captions are provided per pupil and they need to use this to construct their own carbon cycle in their books. Higher ability pupils may want to test their knowledge and turn to their back page to complete this without looking at their previous work
The last task is for pupils to consider the future and how we may be able to implement strategies to help reduce our carbon emissions in order to combat global warming. Pupils are to discuss possible methods/strategies we could use and mind map their ideas in their books.
The plenary task is for pupils to turn to the back of their books and write down a description of as many processes which contribute to the carbon cycle as possible.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a think > share > pair task for pupils to consider the definition of genetic engineering, once pupils have had a discussion about this the answer can be revealed.
Pupils will then be shown a video about the steps involved with genetic engineering, pupils will need to answer questions whilst watching the video. Pupils can then check their work against the answers provided and correct anything they perhaps didn't get during the video.
Pupils will then be given a diagram of the genetic engineering process, specifically using the example of the human gene for insulin being inserted into a bacterium. Pupils will need to copy the diagram into their books and choose the correct statements, from a jumbled list, to go with the correct steps. Pupils can self or peer-assess their work once this task is complete.
The next part of the lesson is on the genetic modification of crops, pupils will firstly watch some videos which outlines various viewpoints of the growth and consumption of GM crops. Pupils should watch the videos and note down any benefits or problems they identify, a class discussion can follow this to ensure all students got the important points.
The benefits of GM crops will then be highlighted to students with the aim to be used to feed the world's starving nations. After pupils have read through this they will be asked to come up statements that a collection of people might make about GM crops - an organic farmer, a charity worker for a world hunger organisation, a GCSE student and a GM scientist.
The final activity is for pupils to complete the exam-style question on genetic engineering, once completed pupils can assess their work using the mark scheme provided.
The plenary is for pupils to pick a task - either write a summary sentences including a list of key words or identify the questions for a list of answers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson starts with a recap from the previous lesson showing gametes fusing during fertilisation and the changes in chromosome numbers. The first task is for pupils to watch a video and answer a set of questions whilst they are watching, once the video is complete they can assess their work using the mark scheme provided.
Pupils will then be given a worksheet with a diagram of meiosis occurring and statements where pupils will need to fill in blanks to complete the correct steps in the process. Pupils can assess their work using the answers provided.
Pupils will then be shown the different between diploid and haploid cells and how this can be depicted in a diagram, they will be shown the changes that occur going from two haploid gametes to a diploid zygote.
The next activity is for pupils to sort statements into two columns - mitosis or meiosis. Once this activity has been completed pupils can mark their work using the answers available.
Pupils will now complete a quick check, pupils will answer questions about the topic of meiosis into their books. For higher tier pupils they can be challenged by completing the questions at the back of their books without using their notes. Once completed the work can either be self-assessed or peer-assessed.
The final activity is an exam-style question which higher ability pupils can complete at the back of their books, this can then be assessed usng the mark scheme provided.
The plenary activity is for pupils to pick a plenary between summarising the work from the lesson in three sentences or writing a definition for a set of key words.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Molecules & Matter’ unit for the NEW AQA Physics Specification.
Lessons include:
Atoms & Radiation
The Development of the Nuclear Model
Radioactive Decay
Alpha, Beta & Gamma Radiation
Half-life & Radioactivity
Nuclear Radiation & Medicine
Nuclear Fission & Nuclear Fusion
Dangers of Radiation
The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Bioenergetics' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction of the process of aerobic respiration including the word equations that pupils will need to learn. Next is a video, pupils will need to answer questions whilst watching the video, once it is finished they can self-assess their work using the mark scheme provided.
Pupils are then introduced to the idea that aerobic respiration is exothermic and look specifically at the ultra-structure of the cell and which parts are important for respiration, this activity is a match up activity that pupils can complete and then mark.
A mid-plenary is a true or false task and the final activity is a levelled worksheet pupils will complete using information cards on how animal and plant organisms use the energy released by respiration. Once finished they can self-assess using the mark scheme on the PowerPoint slides.
Pupils have a choice of two activities to complete for their plenary - either an anagram challenge or a summary sentence using a list of key words.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C4 ’Acids & Alkalis’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson starts with a question for students to consider, two ideas are presented to them - one student suggests that we could taste the unknown contents of two beakers to determine if it’s an acid/alkali whereas the other students suggests this is dangerous and we should use a chemical indicator instead. Students should discuss their ideas about who is right and feedback to a class discussion. This leads into an introduction to chemical indicators such as litmus paper and universal indicator.
Students will now watch a video on the use of litmus paper, whilst watching the video students will need to fill in the blanks on the table provided. This work can then be self-assessed using the mark scheme provided. Next, students will summarise what they have learned so far by completing a fill-in-the-blank task, this also can be marked and corrected using the answers provided on the PowerPoint.
The next activity requires students to read a piece of information on indicators & pH, using this information students will need to answer a set of questions. This task can be marked using the mark scheme provided on the PowerPoint.
Students can now complete an investigation, using universal indicator to determine the pH and acidity/alkalinity of different substances. Students can use the practical sheet to conduct this practical, recording their results in an appropriate table.
The final task is a literacy check, students will need to link groups of words together in a sentence to summarise what they have learned this lesson.
The plenary task requires students to write a Whatsapp message telling them what they have learned in the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on co-transport and absorption of glucose in the ileum begins with a starter discussion which asks students to compare and contrast transport and diffusion. They are also asked to discuss the importance of transport rather than diffusion in regard to reabsorption in the kidneys.
The first task is a microscope activity for students to work in partner pairs and investigate adaptations of the epithelial cells of the ileum. Students will set up their light microscope to examine prepared slides and answer some questions. Answer samples are in the notes below the slides.
The following slides define villi and microvilli for students to note in their books. There is a brief explanation of the relationship between increased surface area and space for carrier proteins.
Students are then introduced to the role of diffusion in absorption and should take clear notes regarding facilitated diffusion. They should use the diagram on the slide to discuss why glucose concentration differs between epithelial and ileum cells. Relying on diffusion will only result in the concentrations either side of the intestinal epithelium becoming equal. Students should discuss why this is a problem, and how it might be overcome.
The next slide is a complete diagram explaining co-transport of amino acids or glucose molecules. Students should take notes in their books because the next task is to complete a cartoon of this process and summarise the main steps.
Students are then asked to ‘think > pair > share’ about the co-transport process and decide whether it is a direct or indirect form of active transport. They should use the details on the slide to inform their discussion.
The final task is an exam-style question, with a mark scheme on the following slide for students to self-assess and consolidate their learning from this lesson.
The plenary task is to either; summarise the lesson in three sentences, or complete definitions for five key-terms from the lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)