Hero image

Teach Science & Beyond

Average Rating4.88
(based on 24 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

115k+Views

75k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
The Periodic Table (OCR)
TeachScienceBeyondTeachScienceBeyond

The Periodic Table (OCR)

9 Resources
9 Full Lesson Bundle covering Module 3.1 - The Periodic Table from OCR A Level Chemistry A specification. Please review the learning objectives below Lesson 1: The Structure of The Periodic Table To know how the periodic table is arranged To describe the periodic trend in electron configurations across periods 2 and 3 To classify elements into s, p and d blocks Lesson 2: AS Chemistry: Ionisation Energy (Part 1) To define the term ‘first ionisation energy’ and successive ionisation energies To describe the factors affecting ionisation energy To explain the trend in successive ionisation energies of an element Lesson 3: AS Chemistry: Ionisation Energy (Part 2) To explain the trend in first ionisation energies down a group To explain the trend in first ionisation energies across period 2 To explain the trend in first ionisation energies across period 3 Lesson 4: Periodicity: Melting Points To describe the trend in structure from giant metallic to giant covalent to simple molecular lattice To explain the variation in melting points across period 2 & 3 in terms of structure and bonding Lesson 5: AS Chemistry: Group 2 Elements To know group 2 elements lose their outer shell s2 electrons to form +2 ions To state and explain the trend in first and second ionisation energies of group 2 elements and how this links to their relative reactivities with oxygen, water and dilute acids To onstruct half equations of redox reactions of group 2 elements with oxygen, water and dilute acids and to identify what species have been oxidised and reduced using oxidation numbers Lesson 6: AS Chemistry: Group 2 Compounds To know the reaction between group 2 metal oxides and water To state the trend in solubility and alkalinity of group 2 metal hydroxides To describe the uses of some group 2 compounds including their equations Lesson 7: The Halogens: Properties & Reactivity To describe and explain the trend in boiling points of the halogens in terms of induced dipole-dipole interactions (London Forces) To describe and explain the trend in reactivity of the halogens illustrated by their displacement reaction with other halide ions To construct full and ionic equations of halogen-halide displacement reactions and to predict the colour changes of these reactions in aqueous and organic solutions Lesson 8: Disproportionation & The Uses of Chlorine To explain the term disproportionation To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions To evaluate the uses of chlorine (How Science Works) Lesson 9: Qualitative Analysis To carry out test tube reactions and record observations to determine the presence of the following anions : CO32- SO42- , Cl-, Br-, and I- To carry out test tube reactions and record observations to determine the presence of the following cations: NH4+, Fe2+, Fe3+, Mn2+ and Cu2+ To construct ionic equations to explain the qualitative analysis tests of cations and anions Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A2 Chemistry: OCR Synthetic Routes Revision
TeachScienceBeyondTeachScienceBeyond

A2 Chemistry: OCR Synthetic Routes Revision

(0)
A 14 page summary of all the organic synthesis reactions from the AS and A level OCR Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable Reaction summaries include: nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* electrophilic substitution reactions* reactions of phenols* carbon-carbon formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions* Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Chromatography
TeachScienceBeyondTeachScienceBeyond

Chromatography

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on chromatography **By the end of the lesson, students should be able to: To interpret one-way TLC chromatograms in terms of Rf values To interpret gas chromatograms in terms of: (i) retention times (ii)  the amounts and proportions of the components in a mixture To understand the creation and use of external calibration curves to confirm concentrations of components. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Transition Metals & Complex Ions
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Complex Ions

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Complex Ions **By the end of this lesson KS5 students should be able to: To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands To use the terms complex ion and coordination number To construct examples of complexes with: (i) six-fold coordination with an octahedral shape (ii) four-fold coordination with either a planar or tetrahedral shape The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Qualitative Analysis of Organic Functional Groups
TeachScienceBeyondTeachScienceBeyond

Qualitative Analysis of Organic Functional Groups

(0)
A well structured KS5 Lesson on Qualitative Analysis of Organic Functional Groups (Year 13). The lesson contains a starter activity and main work tasks, all with answers included By the end of the lesson students should be able: To recall qualitative analysis of organic functional groups on a test-tube scale To design qualitative analysis tests to distinguish between two or more organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Collision Theory and Rates of Reaction
TeachScienceBeyondTeachScienceBeyond

Collision Theory and Rates of Reaction

(0)
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on Collision Theory and Rates of Reaction. Suitable for OCR Specification (AS Chemistry) By the end of this lesson KS5 students should be able to: To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions To calculate the rate of reaction using the gradients of a concentration-time graph To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Condensation Polymers
TeachScienceBeyondTeachScienceBeyond

Condensation Polymers

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Condensation Polymers By the end of this lesson KS5 students should be able to: 1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides 2. To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation 3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
GCSE Chemistry: Metal and Acid Reactions
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Metal and Acid Reactions

(0)
A well structured lesson including starter activity, AfL activities and main work task with answers on reactions of metals with acids. Suitable for AQA GCSE Chemistry and higher tier combined science The lesson begins with a short starter task (DO NOW) recapping the definitions of oxidation, reduction and displacement reactions Then by the end of this lesson KS4 students should be able to: Describe how to make salts from metals and acids Construct word equations from metal and acid reactions Write full balanced symbol equations for making salts The teacher will be able to check students have met these learning objectives through mini AfL tasks and main work tasks for students to complete Please download the free resource from my shop called: ‘names and formulae of compounds and ions’ to support students when writing symbol equations for this lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
The Reactions of Benzene
TeachScienceBeyondTeachScienceBeyond

The Reactions of Benzene

(0)
Well structured KS5 Lesson on The Reactions of Benzene. The lesson contains starter activities, discussion questions and mini AfL questions and practice questions, all with answers included By the end of the lesson students should: To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Storage and Fuel Cells
TeachScienceBeyondTeachScienceBeyond

Storage and Fuel Cells

(0)
A structured KS5 lesson including starter activity and AfL work tasks on Storage and Fuel Cells **By the end of this lesson KS5 students should be able to: **LO1: To understand the application of the principles of electrode potentials to modern storage cells **LO2: To explain that a fuel cell uses the energy from a reaction of a fuel with oxygen to produce a voltage **LO3: To derive the reactions that take place at each electrode in a hydrogen fuel cell The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Ionisation Energy
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Ionisation Energy

2 Resources
2 Lesson bundle covering the AS Chemistry topic on Ionisation Energy. Suitable for OCR, AQA and Edexcel Lesson 1: Ionisation Energy (Part 1) Define the term ‘first ionisation energy’ and successive ionisation energies Describe the factors affecting ionisation energy 3)Explain the trend in successive ionisation energies of an element Lesson 2: Ionisation Energy (Part 2) Explain the trend in first ionisation energies down a group Explain the trend in first ionisation energies across period 2 Explain the trend in first ionisation energies across period 3 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Core Organic Chemistry (OCR)
TeachScienceBeyondTeachScienceBeyond

Core Organic Chemistry (OCR)

20 Resources
20 well structured chemistry lessons covering topics in Module 4 of the OCR Specification: **Core Organic Chemistry ** *(Note: Lessons on Analytical techniques: IR and Mass spectroscopy are sold as a separate bundle in my shop) * Lesson 1: Organic and Inorganic Compounds To describe what organic and inorganic compounds are 2 To compare the strength of bonds in organic and inorganic compounds To explain the molecular shape of carbon containing compounds Lesson 2: Naming organic compounds To know the IUPAC rules for naming alkanes and alkenes To know the IUPAC rules for naming aldehyde, ketones and carboxylic acids To construct structural or displayed formulae from named organic compounds and name organic compounds from the structural or displayed formulae Lesson 3: Types of formulae To know what is meant by the terms empirical and molecular formula To compare the terms general, structural, displayed and skeletal formula To construct organic compounds using either of the 6 types of formulae Lesson 4: Isomers To describe what structural isomers and stereoisomers are To construct formulae of structural isomers of various compounds To construct formulae of E-Z and cis-trans stereoisomers of alkenes Lesson 5: Introduction To Reaction Mechanisms To understand that reaction mechanisms are diagrams that illustrate the movement of electrons using curly arrows To understand where curly arrows being and where they end To identify and illustrate homolytic and heterolytic bond fission in reaction mechanisms Lesson 6: Properties of Alkanes To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate To explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion To describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces Lesson 7: Combustion of Alkanes To understand why alkanes are good fuels To recall the equations (both word and symbol) for complete combustion of alkanes To recall the equations (both word and symbol) for incomplete complete combustion of alkanes Lesson 8: Free Radical Substitution of Alkanes To know what a free radical is To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products Lesson 9: The Properties of Alkenes 1.To know the general formula of alkenes 2. To explain the shape and bond angle around each carbon atom of a C=C bond 3. To describe how π and σ bonds are formed in alkenes Lesson 10: Addition Reactions of Alkenes To know what an electrophile is To describe what an electrophilic addition reaction is To outline the mechanism for electrophilic addition Lesson 11: Addition Polymerisation To know the repeat unit of an addition polymer deduced from a polymer To identify the monomer that would produce a given section of an addition polymer To construct repeating units based on provided monomers Lesson 12: Dealing with Polymer Waste To understand the benefits for sustainability of processing waste polymers by: Combustion for energy production Use as an organic feedstock for the production of plastics and other organic chemicals Removal of toxic waste products such as HCl To understand the benefits to the environment of development of biodegradable and photodegradable polymers Lesson 13: Properties of Alcohols To identify and explain the intermolecular forces that are present in alcohol molecules To explain the water solubility of alcohols, their low volatility and their trend in boiling points To classify alcohols as primary, secondary or tertiary alcohols Lesson 14: Oxidation of Alcohols To know that alcohols can undergo combustion reactions in the presence of oxygen To know alcohols can be oxidised by an oxidising agent called acidified potassium dichromate To know the products and reaction conditions for the oxidation of primary alcohols to aldehydes and carboxylic acids To know the products and reaction conditions for the oxidation of secondary alcohols to ketones Lesson 15: Other Reactions of Alcohols To know the elimination of H2O from alcohols in the presence of an acid catalyst and heat to form alkenes To know the substitution of alcohols with halide ions in the presence of acid to form haloalkanes Lesson 16: Haloalkanes and their Reactions (part 1) To define and use the term nucleophile To outline the mechanism for nucleophilic substitution of haloalkanes Lesson 17: Haloalkanes and their Reactions (part 2) To explain the trend in the rates of hydrolysis of primary haloalkanes in terms of the bond enthalpies of carbon-halogen bonds To describe how the rate of hydrolysis of haloalkanes can be determined by experiment using water, ethanol and silver nitrate solution Lesson 18: Haloalkanes and the environment To know how halogen radicals are produced from chlorofluorocarbons (CFCs) by the action of UV radiation To construct equations for the production of halogen radicals from CFCs To construct equations for the catalysed breakdown of ozone by Cl. and other radicals (NO.) Lesson 19: Practical skills for organic synthesis To demonstrate knowledge, understanding and application of the use of Quickfit apparatus for distillation and heating under reflux To understand the techniques for preparation and purification of an organic liquid including: Lesson 20: Synthetic routes in organic synthesis To identify individual functional groups for an organic molecule containing several functional groups To predict the properties and reactions of an organic molecule containing several functional groups To create two-stage synthetic routes for preparing organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Practical Skills in Organic Synthesis (Yr13)
TeachScienceBeyondTeachScienceBeyond

Practical Skills in Organic Synthesis (Yr13)

(0)
A structured KS5 lesson (Yr13) including starter activity, discussion questions, videos and main work task all with answers included on Practical Skills for Organic Synthesis II. Suitable for the OCR specification. By the end of this lesson KS5 students should be able to: To describe the techniques and procedures used for the purification of organic solids including: filtration under reduced pressure recrystallisation measurement of melting points Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Disproportionation & The Uses of Chlorine
TeachScienceBeyondTeachScienceBeyond

Disproportionation & The Uses of Chlorine

(0)
A structured KS5 lesson including starter activity, and main work tasks all with answers on Disproportionation & The Uses of Chlorine By the end of this lesson KS5 students should be able to: To explain the term disproportionation To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions To evaluate the uses of chlorine (How Science Works) All tasks have worked out answers, which will allow students to self assess their work during the lesson For the 3rd learning objective, students will have an opportunity to explore the uses of chlorine beyond the curriculum by completing a group research task based on the following OCR specification point: HSW9,10,12 Decisions on whether or not to chlorinate water depend on balance of benefits and risks, and ethical considerations of people’s right to choose. Consideration of other methods of purifying drinking water. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Carbon-13 NMR Spectroscopy
TeachScienceBeyondTeachScienceBeyond

Carbon-13 NMR Spectroscopy

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Carbon-13 NMR Spectroscopy By the end of this lesson KS5 students should be able to: To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about: The number of carbon environments in the molecule The different types of carbon environment present from chemical shift values Possible structures for the molecule Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
GCSE Chemistry: pH and Neutralisation
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: pH and Neutralisation

(0)
A well structured lesson including starter activity, AfL activities and main work task with answers on pH and neutralisation. Suitable for AQA GCSE Chemistry and higher tier combined science Then by the end of this lesson KS4 students should be able to: To state the ionic equation involved in neutralisation reactions To describe the use of a universal indicator to measure pH changes To compare acid strength and concentration The teacher will be able to check students have met these learning objectives through mini AfL tasks and main work tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Directing Groups in Aromatic Compounds
TeachScienceBeyondTeachScienceBeyond

Directing Groups in Aromatic Compounds

(0)
A well structured KS5 Lesson on Directing Groups in Aromatic Compounds. This lesson is a follow up to the lesson on Phenols. This lesson contains a starter activity, mini AfL questions and practice questions, all with answers included By the end of the lesson students should: To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Redox Reactions
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Redox Reactions

3 Resources
3 fully planned lessons (including starter questions and main work tasks) covering the AS Chemistry chapter on Redox Reactions; Lesson 1: Oxidation States Lesson 2: Half Equations Lesson 3: Forming Redox Equations By the end of lesson 1 students will: Recall the rules for oxidation states of uncombined elements and elements in compounds Determine the oxidation states of elements in a redox reaction Identify what substance has been reduced or oxidised in a redox reaction By the end of lesson 2 students will: Understand what a half equation is Explain what a redox equation is Construct half equations from redox equations By the end of lesson 3 students will: Identify what substance has been reduced or oxidised in a redox reaction Construct balanced half equations by adding H+ and H2O Construct full ionic redox equations from half equations Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Electrons, Bonding & Structure
TeachScienceBeyondTeachScienceBeyond

Electrons, Bonding & Structure

11 Resources
11 Full Lesson Bundle covering the OCR A Level Chemistry Chapter on Electrons, Bonding & Structure. Lessons are also suitable for AQA and Edexcel (please review the learning objectives below). **Lesson 1: Atomic Orbitals To know that atomic orbitals are a region around the nucleus that occupy electrons To illustrate the shape of s, p and d orbitals To describe the number of orbitals that make up the s, p and d sub shells and the number of electrons that fill the sub shells To deduce the electronic configuration of atoms and ions in the s and p-block **Lesson 2: Electronic Configuration of d-block elements To recall the order of electron shells to be filled To construct electronic configurations of d-block atoms and ions To know the elemental anomalies in electron filling of d block atoms **Lesson 3: Ionic Bonding To know ionic bonding as electrostatic attraction between positive and negative ions, and the construction of ‘dot-and-cross’ diagrams To explain solid structures of giant ionic lattices are a result of oppositely charged ions strongly attracted to each other in all directions To link the structure and bonding of ionic compounds on their physical properties including melting and boiling points, solubility and electrical conductivity in solid, liquid and aqueous states **Lesson 4: Covalent and Dative Covalent Bonding To know covalent bonding as electrostatic attraction between a shared pair of electrons and the nucleus To construct dot and cross diagrams of molecules and ions to describe single and multiple covalent bonding To apply the term average bond enthalpy as a measurement of covalent bond strength To know what a dative covalent bond is To construct dot and cross diagrams of molecules and ions to describe dative covalent bonding **Lesson 5: Simple and Giant Covalent Structures To describe the structure of simple and giant covalent compounds To explain how the structure and bonding of simple and giant covalent compounds link to their different physical properties To evaluate the potential applications of covalent structures based on their physical properties (stretch & challenge) **Lesson 6: Metallic Bonding and Structure To describe the structure of metals To explain metallic bonding as strong electrostatic attraction between cations and delocalised electrons To explain the physical properties of giant metallic structures **Lesson 7: Shapes of Molecules and Ions To determine the number of bonding pairs & lone pairs in a molecule or ion To recall the shapes and bond angles of molecules and ions with up to six electron pairs surrounding the central atom To explain the shapes of molecules and ions using the electron pair repulsion theory To construct diagrams to illustrate the 3D shapes of molecules and ions **Lesson 8: Electronegativity and Bond Polarity To define the term electronegativity To explain the trend in electronegativity down a group and across a period To explain what a polar covalent bond is bond and to illustrate this type of bond in a molecule **Lesson 9: Polar and Non-Polar Molecules To describe the difference between polar and non-polar molecules To explain why non-polar molecules can contain polar bonds To predict whether molecules are polar or non-polar **Lesson 10 : Intermolecular Forces (Part 1) Understand intermolecular forces based on induced-dipole interactions and permanent dipole-dipole interactions Explain how intermolecular forces are linked to physical properties such as boiling and melting points Compare the solubility of polar and non-polar molecules in polar and non-polar solvents **Lesson 11 : Intermolecular Forces (Part 2) To understand hydrogen bonding as intermolecular forces between molecules containing N, O or F and the H atom of –NH, -OH or HF To construct diagrams which illustrate hydrogen bonding To explain the anomalous properties of H2O resulting from hydrogen bonding Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A Level Organic Chemistry (OCR)
TeachScienceBeyondTeachScienceBeyond

A Level Organic Chemistry (OCR)

18 Resources
17 well structured chemistry lessons plus a BONUS revision summary covering topics in Module 6 of the OCR Specification: **Organic Chemistry ** *Note: Lessons on Analysis: chromatography, qualitative analysis of functional groups and NMR spectroscopy are sold as a separate bundle in my shop) * Lesson 1: Benzene and its Structure To describe the Kekulé model of benzene To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system To compare the Kekulé model of benzene and the delocalised model of benzene To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Lesson 2: Naming Aromatic Compounds To state the IUPAC name of substituted aromatic compounds Construct the structure of aromatic compounds based on their IUPAC names To analyse the correct numbering system for di and trisubstituted aromatic compounds Lesson 3: The Reactions of Benzene To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Lesson 4: Phenols To recall and explain the electrophilic substitution reactions of phenol: with bromine to form 2,4,6-tribromophenol (ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Lesson 5: Directing Groups in Aromatic Compounds To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Lesson 6: Reactions of Carbonyl Compounds To understand the oxidation of aldehydes using Cr2O72-/H+ to form carboxylic acids To understand nucleophilic addition reactions of carbonyl compounds with: NaBH4 to form alcohols HCN (NaCN (aq)/H+ (aq)) to form hydroxynitriles To construct the mechanism for nucleophilic addition reactions of aldehydes and ketones with NaBH4 and HCN Lesson 7: Testing for Carbonyl Compounds To understand the use of Tollens’ reagent to: (i) detect the presence of an aldehyde group (ii) distinguish between aldehydes and ketones, explained in terms of the oxidation of aldehydes to carboxylic acids with reduction of silver ions to silver To understand the use of 2,4-dinitrophenylhydrazine to: (i) detect the presence of a carbonyl group in an organic compound (ii) identify a carbonyl compound from the melting point of the derivative Lesson 8: Carboxylic acids and Esters To explain the water solubility of carboxylic acids in terms of hydrogen bonding To recall the reactions in aqueous conditions of carboxylic acids with metals and bases (including carbonates, metal oxides and alkalis) To know the esterification of: (i) carboxylic acids with alcohols in the presence of an acid catalyst (ii) acid anhydrides with alcohols To know the hydrolysis of esters: (i) in hot aqueous acid to form carboxylic acids and alcohols (ii) in hot aqueous alkali to form carboxylate salts and alcohols Lesson 9: Acyl Chlorides and Their Reactions To know how to name acyl chlorides To recall the equation for the formation of acyl chlorides from carboxylic acids using SOCl2 To construct equations for the use of acyl chlorides in the synthesis of esters, carboxylic acids and primary and secondary amides Lesson 10: Introduction to Amines To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Lesson 11: Preparation of Amines To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Lesson 12: Amino Acids and Their Reactions To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Lesson 13: Chirality To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre To identify chiral centres in a molecule of any organic compound. To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes Lesson 14: Amides To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Lesson 15: Condensation Polymers To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Lesson 16: Practical Skills in Organic Synthesis (Yr13) To describe the techniques and procedures used for the purification of organic solids including: filtration under reduced pressure recrystallisation measurement of melting points Lesson 17: Synthetic Routes in Organic Synthesis (Y13) To identify individual functional groups for an organic molecule containing several functional groups To predict the properties and reactions of organic molecules containing several functional groups To create multi-stage synthetic routes for preparing organic compounds Synthetic Routes Revision Summary A 14 page summary of all the organic synthesis reactions from the AS and A level OCR Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable Reaction summaries include: nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* electrophilic substitution reactions* reactions of phenols* carbon-carbon formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions* Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above