Learning outcomes:
Describe the types of gene mutation
Explain how the different types of gene mutation result in different amino acid sequences in polypeptides
-Explain why some mutations do not result in a changed amino acid sequence
Discuss the causes of gene mutations
With glossary and checklist included.
Learning outcomes:
-State what totipotent cells are
-Explain how cells lose their totipotency and become specialised
-Describe cell differentiation and specialisation
-Describe the origins and types of stem cells
-Explain how totipotent stem cells can treat disease
Contains the following lessons from part 1 of the organisms respond to changes in the environment section:
L1 - Survival and response
L2 - Plant growth factors
L3 - A reflex arc
L4 - Receptors
L5 - Control of heart rate
Full lesson, ready to use.
Learning outcomes:
Define a stimulus and response
Examine the advantage of being able to respond to stimuli
Describe taxes, kinesis and tropisms
Explain how each type of response increases an organisms chances of survival
This lesson is modelled after the AQA A-level Biology syllabus.
Learning objectives:
-Describe the nature of resting potential
Explain how the resting potential is established in a neuron
Explain what an action potential is
Learning objectives
Distinguish between benign and malignant tumours.
Explain the role of oncogenes and tumour suppressor genes in the development of tumours.
Explain the effects of abnormal methylation of tumour suppressor genes and oncogenes.
Explain how increased oestrogen levels can cause breast cancer
Learning outcomes:
Describe the main features of sensory reception
Describe the structure of a Pacinian corpuscle and explain how it works
Explain how receptors work together in the eye
2016 onwards, out of the box lesson
Learning outcomes:
Explain how a simple reflex arc works
Explain the roles sensory, intermediate and motor neurones play in the reflex arc
Outline the importance of reflex arc
This is a print free resource.
Learning outcomes:
Describe the gross and microscopic structure of a skeletal muscle
Describe the ultrastructure of a myofibril
Explain how actin and myosin are arranged within a myofibril.
Describe
what a mole is, and what is meant by a molar solution
Explain
bonding and the formation of molecules
Describe
polymerization and state what macromolecules are
Describe
condensation and hydrolysis
Describe
metabolism
Based on 2015 and onwards AQA A-level
-Describe and explain how an action potential passes along an unmyelinated neurone.
-Describe and explain how an action potential passes along an myelinated neurone.
Learning outcomes:
Explain how hormones work
Explain the roles of the pancreas and liver in regulating blood glucose
Explain the factors which influence blood glucose concentrations
Explain the roles of insulin, glucagon and adrenalin in regulating blood glucose.
Contains the following lessons:
L1 Neurons and the nervous system
L2 Action potentials and nerve impulses
L3 The passage of an action potential
L4 Speed of a nerve impulse
L5 Structure and function of synapses
L6 Transmission across a synapse
L7 Structure of a skeletal muscle
L8 Contraction of skeletal muscle
Learning objective:
Explain how terrestrial plants and insects balance the need for gas exchange and the need to conserve water
Includes summary questions, quiz and exam questions w/ MS.
This 1-hour practical lesson investigates the effect of temperature on enzyme activity using trypsin to break down casein. It includes knowledge recall, practical setup, data collection, graphing, and methodology write-up. The lesson provides clear instructions on variables, CPAC standards, and safety guidance. Ideal for students starting their A-level practical work.
Learning Objectives:
Investigate how temperature affects enzyme activity.
Record and analyze experimental data.
Write up the methodology for a practical investigation.
This resource is perfect for AQA teachers, offering structured guidance and essential practical skills development.
Learning outcomes:
Describe the nature of homeostasis
Explain the importance of homeostasis
Explain how control mechanisms work
Explain how control mechanisms are coordinated
Learning outcomes:
Explain what negative feedback is
Explain how negative feedback helps to control homeostatic processes
Distinguish between negative and positive feedback
Learning outcomes:
-Explain how monosaccharides are linked together to form -disaccharides
-Describe how alpha glucose molecules are linked to form starch
-Describe the test for non-reducing sugars
-Describe the test for starch
Worksheets within the PPT .
Learning outcomes:
Describe the autonomic nervous system
Explain how the autonomic nervous system controls heart rate
Explain the role chemical and pressure receptors play in the processes controlling the heart rate
2016 onwards - out of the box lesson
Learning outcomes:
-Explain how oestrogen affects transcriptase
-State what small interfering RNA is
-Explain how small interfering RNA affects gene expressions