Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1214k+Views

2020k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Maths in A-level Biology (AQA A-level Biology)
GJHeducationGJHeducation

Maths in A-level Biology (AQA A-level Biology)

8 Resources
“Overall, at least 10% of the marks in assessments for biology will require the use of mathematical skills” This sentence is taken directly from the AQA A-level Biology specification and clearly shows that being able to apply these skills in the context of biology will have a significant impact on a student’s chances of success. This bundle has been created to cover as much of those mathematical skills as possible A revision lesson is also included in this bundle which acts as a fun and engaging revision of the range of calculations
Maths in A-level Biology (CIE A-level Biology)
GJHeducationGJHeducation

Maths in A-level Biology (CIE A-level Biology)

7 Resources
Without doubt, the CIE A-level Biology specification contains a lot of maths calculations and every year, there are a large number of exam questions that require the application of a range of mathematical skills. Therefore, a clear understanding of how and when to apply these skills is closely related to success on this course and the following calculations are covered by the 7 lessons that are included in this bundle: Using the eyepiece graticule and stage micrometer to measure cells and be familiar with units Calculating actual sizes of specimens from drawings, photomicrographs and electron micrographs Using the chi-squared test to determine significance between the observed and expected results of a genetic cross Use the t-test to compare the variation of two populations Using the Hardy Weinberg principle to calculate allele, genotype and phenotype frequencies in populations Use Spearman’s rank correlation to analyse relationships between the distribution and abundance of species and abiotic or biotic factors Using Simpson’s index of diversity to calculate the biodiversity of a habitat All of the lessons contain step by step guides that walk the students through the application of the formulae and there are lots of worked examples and exam-style questions for the students to use to assess understanding
Topics 17 & 18: Selection, evolution, biodiversity & classification (CIE A-level Biology)
GJHeducationGJHeducation

Topics 17 & 18: Selection, evolution, biodiversity & classification (CIE A-level Biology)

16 Resources
The topics of selection, evolution, biodiversity, classification and conservation are key concepts in Biology, that are regularly assessed in the exams, but are not always that well understood by the students. With this at the forefront of the lesson design, these 16 lesson PowerPoints and their accompanying resources have been intricately planned to cover the detailed content of topics 17 & 18 of the CIE A-level Biology specification through the use of a wide range of tasks to engage and motivate the students. There are plenty of opportunities for the students to assess their current understanding through the completion of exam-style questions and also to check on their prior knowledge by making links to earlier topics. The following specification points are covered by these lessons: Topic 17.1: Variation The differences between continuous and discontinuous variation Using the t-test to compare the variation of two different populations The importance of genetic variation in selection Topic 17.2: Natural and artificial selection Natural selection Explain how environmental factors can act as stabilising, disruptive and directional forces of natural selection Explain how the founder effect and genetic drift may affect allele frequencies in populations Use the Hardy-Weinberg principle Topic 17.3: Evolution The molecular evidence that reveals similarities between closely related organisms Explain how speciation may occur Topic 18.1: Biodiversity Define the terms species, ecosystem and niche Explain that biodiversity is considered at three levels Explain the importance of random sampling in determining the biodiversity of an area Use suitable methods to assess the distribution and abundance of organisms in a local area Use the Spearman’s rank correlation to analyse relationships between data Use Simpson’s index of diversity Topic 18.2: Classification The classification of species into taxonomic hierarchy The characteristic features of the three domains The characteristic features of the kingdoms Explain why viruses are not included in the three domain classification Topic 18.3: Conservation The reasons for the need to maintain biodiversity Methods of protecting endangered species The roles of organisations like the WWF and CITES in local and global conservation If you would like to sample the quality of the lessons that are included in this bundle then download the following as these have been shared for free: Continuous and discontinuous variation Molecular evidence & evolution Spearman’s rank correlation WWF, CITES and conservation It is estimated that it will take up to 2 months of A-level Biology teaching time to cover the detail included in these lessons
Spearman's rank correlation (CIE A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation (CIE A-level Biology)

(1)
This lesson describes how to use the Spearman’s rank correlation to analyse the relationships between the distribution of species and abiotic and biotic factors. The PowerPoint and accompanying exam-style question are the first lesson in a series of 2 which have been designed to cover point 18.1 (e) of the CIE A-level Biology specification and challenges the students on their knowledge of the t-test as covered in topic 17 as well as preparing students for the next lesson on the use of the Pearson’s linear correlation formula. As with the lessons on the t-test and Simpson’s index of diversity, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question which assesses whether there is a relationship between light intensity and % plant cover in a habitat. The mark scheme is displayed on the PowerPoint so the students can assess their understanding and address any misconceptions that may arise
Spearman's rank correlation coefficient (OCR A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation coefficient (OCR A-level Biology)

(0)
This lesson describes how to use the Spearman’s rank correlation coefficient to consider the relationship between two sets of data. The PowerPoint and accompanying exam-style question are part of the final lesson in a series of 3 which have been designed to cover point 4.2.2 (f) of the OCR A-level Biology A specification. The previous two lessons described the different types of variation and explained how to calculate the standard deviation and how to use the Student’s t-test to compare two means. As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
t-test (CIE A-level Biology)
GJHeducationGJHeducation

t-test (CIE A-level Biology)

(0)
This lesson describes the t-test can be used to compare the variation of two different populations. The detailed PowerPoint and accompanying resources have been designed to cover point 17.1 [c] of the CIE A-level Biology specification and also explains how to calculate the standard deviation to measure the spread of a set of data as this value is needed in the t-test formula A step by step guide walks the students through each stage of the calculation of the standard deviation and gets them to complete a worked example with the class before applying their knowledge to another set of data in an exam-style question. This data looks at the birth weights of humans on one day in the UK and this is used again later in the lesson to compare against the birth weights of babies in South Asia when using the t-test. The null hypothesis is introduced and students will learn to accept or reject this based upon a comparison of their value against one taken from the table based on the degrees of freedom.
Maths in A-level Biology (OCR A-level Biology)
GJHeducationGJHeducation

Maths in A-level Biology (OCR A-level Biology)

8 Resources
The mathematical element of the OCR A-level Biology A specification is substantial and every year, there are a large number of exam questions that require the application of a range of mathematical skills. Therefore, a clear understanding of how and when to apply these skills is closely related to success on this course and the following calculations are covered by the 9 lessons that are included in this bundle: Using the chi-squared test to determine significance between the observed and expected results of a genetic cross Using the Hardy Weinberg principle to calculate the frequency of an allele or a genotype in a population Calculating the standard deviation to measure the spread of data Using the Student’s t-test to compare the means of two sets of data Calculating the temperature coefficient Calculating the proportion of polymorphic gene loci Using and interpreting Simpson’s index of diversity to calculate the biodiversity of a habitat Using the Spearman’s rank correlation coefficient to consider the relationship of the data The use and manipulation of the magnification formula A revision lesson is also included in this bundle which acts as a fun and engaging revision of the range of calculations
Standard deviation & the Student's t-test (OCR A-level Biology A)
GJHeducationGJHeducation

Standard deviation & the Student's t-test (OCR A-level Biology A)

(0)
This lesson describes how to calculate the standard deviation to measure the spread of a set of data and to compare means using the t-test. The detailed PowerPoint and accompanying resources have been designed to cover the part of point 4.2.2 (f) of the OCR A-level Biology A specification that includes these two statistical tests. A step by step guide walks the students through each stage of the calculation of the standard deviation and gets them to complete a worked example with the class before applying their knowledge to another set of data. This data looks at the birth weights of humans on one day in the UK and this is used again later in the lesson to compare against the birth weights of babies in South Asia when using the student’s t-test. The null hypothesis is introduced and students will learn to accept or reject this based upon a comparison of their value against one taken from the table based on the degrees of freedom.
Topic 4.5: Transport of gases in blood (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4.5: Transport of gases in blood (Edexcel A-level Biology B)

3 Resources
The 3 lessons contained within this lesson bundle cover the content as detailed in topic 4.5 of the Edexcel A-level Biology B specification. The lesson PowerPoints and accompanying worksheets are filled with lots of different tasks that cover the specification points shown below whilst engaging and motivating the students with exam-style questions, guided discussion periods and quiz competitions. TOPIC 4.5: Transport of gases in blood The structure of haemoglobin in relation to its role in the transport of respiratory gases, including the Bohr effect Understand the oxygen dissociation curve of haemoglobin Understand the similarities and differences between the structures and functions of haemoglobin and myoglobin Understand the significance of the oxygen affinity of foetal haemoglobin as compared to adult haemoglobin
Tissue fluid (Edexcel A-level Biology B)
GJHeducationGJHeducation

Tissue fluid (Edexcel A-level Biology B)

(0)
This lesson describes how tissue fluid is formed and reabsorbed and also describes the role of the lymphatic system in the return of fluid to the blood. The detailed PowerPoint and accompanying resources have been designed to cover points 4.6 (i & ii) of the Edexcel A-level Biology B specification and explains how a combination of the effects of hydrostatic pressure and oncotic pressure results in the formation of tissue fluid in animals. The lesson begins with an introduction to the arteriole and venule end of a capillary as these will need to be considered as separate entities when describing the formation of tissue fluid. A quick quiz competition introduces a value for the hydrostatic pressure at the arteriole end and students are challenged to first predict some parts of the blood will move out of the capillary as a result of the push from the hydrostatic pressure and this allows oncotic pressure to be initially explored. The main part of the lesson uses a step by step guide to describe how the net movement is outwards at the arteriole end before students will use this guidance to describe what happens at the venule end. In the concluding part of the lesson, students will come to recognise oedema as a condition where tissue fluid accumulates and they again are challenged to explain how this occurs before they finally learn how the fluid is returned to the circulatory system as lymph.
Haemoglobin vs myoglobin (Edexcel A-level Biology B)
GJHeducationGJHeducation

Haemoglobin vs myoglobin (Edexcel A-level Biology B)

(0)
This lesson describes the similarities and differences between the structure and function of haemoglobin and myoglobin. The PowerPoint and accompanying resource have been designed to cover point 4.5 (iii) of the Edexcel A-level Biology B specification Students have already covered the structure and function of haemoglobin in topics 1.3 and 4.5, so this concise lesson has been planned to challenge that knowledge. Students are introduced to myoglobin and will learn that this is an oxygen-binding protein found in the skeletal muscle tissue. Therefore the first part of the lesson focuses on slow twitch muscle fibres, where the content of myoglobin is high, and this presents an opportunity for links to be made to respiration, mitochondria and capillaries. The main part of the lesson challenges the students to compare the two proteins on structure and function including the number of polypeptide chains and affinity for oxygen and students can assess their understanding through use of the displayed mark schemes to the series of exam-style questions.
Module 4: Biodiversity, evolution and disease (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4: Biodiversity, evolution and disease (OCR A-level Biology A)

16 Resources
The detailed content, exam-style questions, guided discussion points and quiz competitions that are found in each of the 16 paid lessons that are included in this bundle (as well as the 5 free lessons which are named at the bottom) cover the following specification points in module 4 of the OCR A-level Biology A specification: Module 4.1.1 The different types of pathogen that can cause communicable diseases in plants and animals The means of transmission of animal and plant communicable pathogens The primary non-specific defences against pathogens in animals The structure and mode of action of phagocytes The structure, different roles and modes of action of B and T lymphocytes in the specific immune response The primary and secondary immune responses The structure and general functions of antibodies An outline of the action of opsonins, agglutinins and anti-toxins The differences between active and passive immunity, and between natural and artificial immunity Autoimmune diseases The principles of vaccination Module 4.2.1 How biodiversity can be considered at different levels The random and non-random sampling strategies that are carried out to measure the biodiversity of a habitat How to measure species richness and species evenness The use and interpretation of Simpson’s Index of Diversity How genetic biodiversity may be assessed The ecological, economic and aesthetic reasons for maintaining biodiversity In situ and ex situ methods of maintaining biodiversity International and local conservation agreements made to protect species and habitats 4.2.2 The biological classification of species The binomial system of naming species and the advantage of such a system The features used to classify organisms into the five kingdoms The evidence that has led to new classification systems The different types of variation Using the standard deviation to measure the spread of a set of data Using the Student’s t-test to compare means of data values of two populations Using the Spearman’s rank correlation coefficient to consider the relationship of the data The different types of adaptations to their environment The mechanism by which natural selection can affect the characteristics of a population over time How evolution in some species has an impact on human populations If you would like to get an idea of the quality of the lessons that are included in this bundle, then download the following five OCR A lessons which have been uploaded for free: Immunity & vaccinations Reasons for maintaining biodiversity Taxonomic hierarchy and the binomial naming system Adaptations and natural selection Transmission of animal and plant pathogens
Topic 17: Selection and evolution (CIE A-level Biology)
GJHeducationGJHeducation

Topic 17: Selection and evolution (CIE A-level Biology)

8 Resources
This bundle contains 8 detailed and engaging lessons, and together they cover a lot of the key content of topic 17 in the CIE A-level Biology specification. Selection and evolution are key processes in Biology but are not always well understood or well explained by students. With this in mind, these lessons have been designed to support students in making links between the different concepts. The following specification points are covered by these lessons: The differences between continuous and discontinuous variation Using the t-test to compare the variation of two different populations The importance of genetic variation in selection Natural selection Environmental factors can act as stabilising, disruptive and directional forces in natural selection Selection, the founder effect and genetic drift affect allele frequencies in populations Using the Hardy-Weinberg principle The molecular evidence that reveals similarities between closely related organisms Allopatric and sympatric speciation If you would like to sample the quality of lessons in this bundle then download the following lessons as these have been shared for free continuous and discontinuous variation molecule evidence and evolution
Molecular evidence & evolution (CIE A-level Biology)
GJHeducationGJHeducation

Molecular evidence & evolution (CIE A-level Biology)

(1)
This lesson describes how molecular evidence can be used to reveal similarities between closely-related organisms. The PowerPoint and accompanying resources have been primarily designed to cover point 17.3 (b) of the CIE A-level Biology specification and focus on the comparison of protein structure and mitochondrial DNA but can also be used as a revision of related topics that include protein synthesis and gene mutations. The lesson begins with the introduction of convergent evolution, a process where organisms independently evolve to have similar features due to theeir habitation of similar environments. This allows the importance of molecular evidence to be considered to ensure that organisms which are closely related (in terms of evolution) are recognised. The comparison of the primary structure of a protein involved in respiration (cytochrome c) is used to demonstrate how protein sequence data can be useful. At this point, a series of exam-style questions are used to challenge the students on their knowledge of protein synthesis and gene mutations from topics 6 and 16. The remainder of the lesson considers the use of mitochondrial DNA and a study of the mtDNA genomes of 51 gibbons demonstrates how this can provide evidence of relationships, even in organisms that show high taxonomic diversity like these lesser apes.
Topic 18.2: Classification (CIE A-level Biology)
GJHeducationGJHeducation

Topic 18.2: Classification (CIE A-level Biology)

3 Resources
This lesson bundle contains 3 lessons which have been intricately planned to build on the knowledge acquired in the previous lesson and in earlier topics of the course to allow students to gain a deep understanding of classification. The lesson PowerPoints and accompanying resources contain a wide range of tasks which will engage and motivate the students whilst all of the content of topic 18.2 of the CIE A-level Biology specification is covered as detailed below: Describe the classification of species into the taxonomic hierarchy of domain, kingdom, phylum, class, order, family, genus and species The characteristic features of the three domains The characteristic features of the kingdoms The classification of viruses, separate to the three-domain model of classification of cellular organisms If you would like to sample the quality of the lessons in this bundle, then download the “features of the kingdoms” lesson as this has been shared for free
Archaea, Bacteria & Eukarya & virus classification (CIE A-level Biology)
GJHeducationGJHeducation

Archaea, Bacteria & Eukarya & virus classification (CIE A-level Biology)

(0)
This lesson describes the characteristic features of the three domains and explains why viruses are not included in this classification. The PowerPoint and accompanying resources have been primarily designed to cover points 18.2 (b) & 18.2 (d) of the CIE A-level Biology specification but also contains tasks that challenge the students on their knowledge of taxonomic hierarchy from this topic and the features of virus from topic 1. The lesson begins with an introduction of the microbiologist Carl Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in the last lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank and will understand that it wasn’t until 13 years after the discovery that it was adopted. Moving forwards, the rest of the lesson explains why viruses are not included in this classification and outlines how they are classified, according to the ICTV, through the type of nucleic acid they contain and whether this is single-stranded or double-stranded
Biodiversity & Simpson's Index of Diversity (CIE A-level Biology)
GJHeducationGJHeducation

Biodiversity & Simpson's Index of Diversity (CIE A-level Biology)

(0)
This lesson explains that biodiversity is considered at three levels and describes how the Simpson’s Index of Diversity is used to calculate the biodiversity within a habitat. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 18.1 (a, b & f) of the CIE A-level Biology specification and also covers the meaning of ecosystems and niche as well as some other important ecological terms that are related such as abiotic factors and population. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs throughout the lesson and has been included to engage the students whilst challenging them to recognise key terms from their definitions. This quiz will introduce species, ecosystems, biodiversity, endemic, heterozygote, distribution and natural selection and each of these terms is put into context once introduced. A series of exam-style questions to challenge the students to explain how the distribution of fish is affected by abiotic factors in an ecosystem. Once biodiversity is revealed through the quiz competition, the students will learn that they need to consider biodiversity within a habitat, within a species and within different habitats so that they can be compared. The rest of the lesson uses step by step guides, discussion points and selected tasks to demonstrate how to determine species richness and the Simpson’s index of diversity. The heterozygosity index is also introduced as a means to consider genetic variation. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise This is a detailed lesson with a lot of tasks (some of which are differentiated), so it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover all of the content
Topic 4: Plant structure and function, Biodiversity and Conservation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 4: Plant structure and function, Biodiversity and Conservation (Edexcel Int. A-level Biology)

10 Resources
All 10 lessons included in this bundle are highly detailed and are fully-resourced. The lesson PowerPoints and their accompanying worksheets contain a wide range of tasks that will engage and motivate the students whilst covering the following specification points as set out in topic 4 of the Edexcel International A-level Biology specification: The structure and ultrastructure of plant cells The function of the organelles in plant cells The structure and function of starch and cellulose The similarities and differences between the structures, position and functions of sclerenchyma, xylem and phloem The importance of water and inorganic ions in plants Understand that classification is a means of organising the variety of life based on relationships between organisms New taxonomic groupings The meaning of the terms biodiversity and endemism Know how biodiversity can be measured within a habitat and within a species Comparing biodiversity between habitats using the index of diversity The adaptations of organisms to their environment Use of the Hardy-Weinberg equation Changes in allele frequency are the result of mutation and natural selection Evaluate the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity If you would like to sample the quality of lessons in this bundle then download the cellulose & starch and modern-day classification lessons as these have been uploaded for free
Three-domain model of classification (Edexcel A-level Biology B)
GJHeducationGJHeducation

Three-domain model of classification (Edexcel A-level Biology B)

(0)
This lesson describes the evidence that led to the three-domain model of classification as an alternative to the five-kingdom model. The detailed PowerPoint and accompanying resources have been designed to cover point 3.1 (vii) of the Edexcel A-level Biology B specification and focuses on Carl Woese’s detailed study of the ribosomal RNA gene and the need for this evidence to be validated by the scientific community The lesson begins with an introduction of Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in a lesson at the start of this topic, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank and will understand that it wasn’t until 13 years after the discovery that it was adopted. Moving forwards, the rest of the lesson describes how molecular phylogeny uses other molecules that can be compared between species for classification purposes. One of these is a protein called cytochrome which is involved in respiration and can be compared in terms of primary structure to determine relationships. At this point in the lesson, the students are also tested on their knowledge of the nature of the genetic code (as covered in topic 1) and have to explain how mutations to DNA can also be used for comparative purposes.
Modern-day classification (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Modern-day classification (Edexcel Int. A-level Biology)

(0)
This lesson describes how the critical evaluation of new data by the scientific community leads to new taxonomic groupings, like the three domains of life. The detailed PowerPoint and accompanying resources have been designed to cover point 4.14 (ii) of the Edexcel International A-level Biology specification and focuses on the introduction of the three-domain system following Carl Woese’s detailed study of the ribosomal RNA gene. The lesson begins with an introduction of Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in a previous lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank. Moving forwards, the rest of the lesson describes how molecular phylogeny uses other molecules and that these are compared between species for classification purposes. One of these is a protein called cytochrome which is involved in respiration and can be compared in terms of primary structure to determine relationships. At this point in the lesson, the students are also tested on their knowledge of the nature of the genetic code (as covered in topic 2) and have to explain how mutations to DNA can also be used for comparative purposes.