A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
As cells are the building blocks of living organisms, and Biology is the study of life, it’s fairly obvious that a clear understanding of cell structure is going to be critical for the success of an A-level student on the OCR A-level Biology A course. The 6 lessons included in this bundle are highly detailed and have been intricately planned to contain the detail needed at this level and to make links to topics in the other modules of the specification.
The lesson PowerPoints and accompanying resources contain a wide range of tasks which will engage and motivate the students whilst covering the following specification points in module 2.1.1:
The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms
The use of the eyepiece graticule and stage micrometer
The use of staining in light microscopy
The use and manipulation of the magnification formula
The difference between resolution and magnification
The ultrastructure of eukaryotic cells and the functions of the different cellular components
The interrelationship between the organelles involved in the production and secretion of proteins
The importance of the cytoskeleton
The similarities and differences in the structure and ultrastructure of prokaryotic and eukaryotic cells
If you would like to sample the quality of the lessons included in this bundle, then download “The use of microscopy” and “cytoskeleton” lessons as these have been uploaded for free
This lesson introduces the key inorganic ions that are involved in biological processes and includes cations and anions. The engaging PowerPoint and accompanying resources have been designed to cover point 2.1.2 § of the OCR A-level Biology A specification but also makes links to topics in upcoming modules such as respiration, photosynthesis and neuronal communication.
The roles of the following ions are covered in this lesson:
phosphate
nitrate
chloride
hydroxide
hydrogencarbonate
hydrogen
ammonium
sodium
potassium
calcium
Extra time is taken during the lesson to describe how these ions are involved in the transport of carbon dioxide, the conduction of nervous impulses and blood clotting as well as other processes and a number of quiz competitions have been included to introduce key terms in a fun and memorable way
According to Bill Bryson’s book, “THE BODY”, estimates of the number of proteins in the human body range from a few hundred thousand to a million or more. Regardless of whether the actual number is closer to the bottom or the top estimate, as most of the useful things in the body are proteins, it is clear that a deep understanding of the structure and function of this biological molecule is critical for the success of any student on the OCR A-level Biology A course. All 5 of the lessons included in this bundle are highly detailed and contain a wide range of tasks that will engage and motivate the students whilst ensuring that the specification points in module 2.1.2 regarding proteins are covered.
The following content is covered by the lessons in this bundle:
The general structure of an amino acid
The synthesis and breakdown of dipeptides and polypeptides, by the formation and breakage of peptide bonds
The levels of proteins structure
The structure and function of globular proteins
The properties and functions of fibrous proteins
The biuret test for proteins
The 5th lesson is a revision lesson which uses a range of exam-style questions, understanding checks and quiz competitions to check on the students knowledge of the specification details listed above
This fully-resourced revision lesson uses a range of activities to challenge the students on their knowledge of proteins from module 2.1.2. The engaging PowerPoint and accompanying resources have been designed to test the intricate details of specification points 2.1.2 (k), (l), (m), (n), (o) & (q)
The range of activities include exam-style questions with displayed mark schemes, understanding checks and quick quiz competitions that will engage and motivate the students whilst they assess their understanding of this topic.
The following concepts are tested during this lesson:
The general structure of an amino acid
The formation of dipeptides and polypeptides through condensation reactions
The primary, secondary, tertiary and quaternary structure of a protein
Biological examples of proteins and their specific actions (e.g. antibodies, enzymes, peptide hormones)
The biuret test for proteins
Time has been taken in the planning to make links to topics in upcoming modules such as the genetic code (2.1.3) and intracellular enzymes (2.1.4)
This fully-resourced lesson describes the relationship between the properties and functions of the fibrous proteins, collagen, keratin and elastin. The detailed PowerPoint and accompanying resources have been designed to cover point 2.1.2 (o) of the OCR A-level Biology A specification but also make links to upcoming topics such as blood vessel structure and the immune system as well as constantly challenging students on their knowledge of proteins from earlier in this module.
The lesson begins by challenging the students to recognise 7 structures found in animals from their descriptions and once they’ve written feathers, cartilage, bones, arteries, tendons, callus and skin into the right places, they will reveal the term fibrous and learn that these types of protein are found in these structures. Using their knowledge of the properties of globular proteins, they will learn that the insolubility of fibrous proteins allows them to form fibres, which perform structural functions. The rest of the lesson focuses on the functions of collagen, keratin and elastin and time is taken to discuss the key details and to make links to future topics so that students can recognise the importance of cross-modular based answers. A series of exam-style questions are used to challenge their knowledge of protein structure as well as their ability to apply their knowledge to an unfamiliar situation when learning that elastin is found in the walls of the urinary bladder. All of the questions have mark schemes embedded into the PowerPoint to allow them to immediately assess their understanding.
This lesson has been specifically planned to tie in with the previous lesson on globular proteins as well as the one preceding that on the structures of proteins
This lesson describes the structure and functions of the sensory, relay and motor neurones. The engaging PowerPoint and accompanying resources have been designed to cover point 8.1 of the Edexcel International A-level Biology specification but also considers the organisation of the nervous system into the central and peripheral nervous systems and therefore also covers point 8.10.
The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way.
The students will be able to compare these neurones based on their function but time is taken to distinguish between them based on their structural features. The importance of the myelin sheath for the sensory and motor neurones is briefly discussed and students are introduced to key terminology such as saltatory conduction and Schwann cells so they are prepared for the upcoming lesson covering specification point 8.5. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones.
Throughout the lesson, the organisation of the nervous system is discussed and students are provided with additional knowledge such as the differences between somatic and autonomic motor neurones.
This lesson describes how the nervous system detects stimuli, focusing on the detection of light by the rods in the the retina of mammals. The PowerPoint has been designed to cover the content of specification point 8.8 of the Edexcel International A-level Biology specification and includes descriptions of the roles of rhodopsin, opsin, retinal, sodium ions, cation channels and hyperpolarisation in the formation of action potentials in the optic neurones.
The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. It is likely that students will be aware that the human retina contains rod and cone cells, so the next part of the lesson builds on that knowledge and adds the detail needed at this level. Students will discover that the optical pigment in rod cells is rhodopsin and that the bleaching of this into retinal and opsin results in a cascade of events that allows an action potential to be initiated along the optic nerve. Time is taken to go through the events that occur in the dark and then the students are challenged to use this as a guide when explaining how the events differ in the light. Key terms like depolarisation and hyperpolarisation, that were met earlier in topic 8, are used to explain the changes in membrane potential and the resulting effect on the connection with the bipolar and ganglion cells is then described.
The remainder of the lesson focuses on the Pacinian corpuscle and describes how this responds to pressure on the skin, resulting in the opening of the sodium channels and the flow of sodium ions into the neurone to cause depolarisation
This bundle contains 20 lesson PowerPoints which are highly detailed to ensure that the topic 7 content is covered at the depth required for A-level Biology. The lessons have been intricately planned to contain a wide variety of tasks that will engage and motivate the students whilst covering the current material and to make links to other lessons in this topic as well as to the previous 6 topics.
The tasks, which include exam-style questions with mark schemes, guided discussion time and quick quiz competitions, cover the following points in the respiration, muscles and the internal environment topic of the Edexcel International A-level Biology specification:
The overall reaction of aerobic respiration
The many steps of respiration are controlled and catalysed by a specific intracellular enzyme
The roles of glycolysis in aerobic and anaerobic respiration
The role of the link reaction and the Krebs cycle in the complete oxidation of glucose
The synthesis of ATP by oxidative phosphorylation
The respiratory quotient
Know the way in which muscles, tendons, the skeleton and ligaments interact in movement
The contraction of skeletal muscle in terms of the sliding filament theory
The myogenic nature of cardiac muscle
The coordination of the heartbeat
The use of ECGs in the diagnosis of abnormal heart rhythms
The calculation of cardiac output
The control of heart rate and ventilation rate by the cardiovascular control centre and the ventilation centre in the medulle oblongata
The role of adrenaline in the fight or flight response
The principle of negative feedback in maintaining systems within narrow limits
The meaning of homeostasis and the maintenance of a dynamic equilibrium in exercise
The gross and microscopic structure of the mammalian kidney
Selective reabsorption in the proximal tubule
Water reabsorption in the loop of Henle
The control of mammalian plasma concentration
Switching genes on and off by DNA transcription factors and the roles of peptide and steroid hormones
Due to the detail included in this lesson bundle, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to cover the content
If you would like to sample the quality of the lessons in the bundle, then download the skeletal muscle, coordination of the heartbeat, role of adrenaline and control of mammalian plasma concentration lessons as these have been uploaded for free
The “negative and positive feedback” and “skeletal muscle” lessons are also uploaded on TES for free but haven’t been included in this bundle as the resource limit has been reached
This detailed lesson describes how the ventilation rate is controlled by the ventilation centre in the medulla oblongata. The engaging PowerPoint and accompanying resource have been designed to cover the second part of point 7.13 (ii) in unit 5 of the Edexcel International A-level Biology specification.
The previous lesson described the control of heart rate so this lesson has been written to tie in with this and to use this knowledge to further the students understanding of the control of ventilation rate. The lesson begins with a focus on the muscles involved in ventilation, specifically the diaphragm and external intercostal muscles, so that students can understand how their contraction results in an increase in the volume of the thoracic cavity. Boyle’s law is briefly introduced to allow students to recognise the relationship between volume and pressure so that the movement of air with the pressure gradient can be described. Time is then taken to consider the importance of inhalation and an exam-style question challenges the students to explain that a constant supply of oxygen to the alveoli is needed to maintain a steep concentration gradient with the surrounding capillaries. The students are then tasked with writing a description of exhalation at rest using the description of inhalation as their guide. The rest of the lesson focuses on the mechanisms involved in increasing the rate and depth of breathing during exercise. Students will use their knowledge of the control of heart rate to recall that chemoreceptors detect changes in oxygen and carbon dioxide and blood pH and that the medulla oblongata processes the sensory information that it receives before coordinating a response. The final task challenges them to use the information provided in this lesson and the previous one to order 10 detailed descriptions so they can form a complete passage about this control system
This lesson describes the role of the cardiovascular control centre in the medulla oblongata in the control of heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the first part of point 7.13 (ii) of the Edexcel International A-level Biology specification and explains how this regulation enables the rapid delivery of oxygen and the removal of carbon dioxide.
This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
This fully-resourced lesson looks at the use of electrocardiograms to aid the diagnosis of abnormal heart rhythms. The engaging PowerPoint and accompanying resources have been designed to cover point 7.12 (iii) of the Edexcel International A-level Biology specification but also can be used as a revision lesson as the students are challenged on their prior knowledge of the cardiac cycle and heart structure as covered in topic 1.
The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem.
This lesson has been designed to tie in with the lesson that covers the previous specification point on the normal electrical activity of the heart and the myogenic nature of cardiac muscle
This fully-resourced lesson describes the roles of the SAN, AVN, the bundle of His and Purkyne tissue in the coordination of the heartbeat. The PowerPoint and accompanying resources have been designed to cover points 7.12 (i) & (ii) of the Edexcel International A-level Biology specification and also describes the myogenic nature of cardiac muscle.
The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 1. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
This lesson describes how to calculate the cardiac output as the product of stroke volume and the heart rate. The PowerPoint and accompanying resource have been designed to cover point 7.13 (i) of the Edexcel International A-level Biology specification.
The lesson begins by challenging the students to recognise that the left ventricle has the most muscular wall of all of the heart chambers. This allows the stroke volume to be introduced as the volume of blood ejected from the left ventricle each heart beat and then a quiz competition is used to introduce normative values for the stroke volume and the heart rate. Moving forwards, students will learn that the cardiac output is the product of the stroke volume and the heart rate. A series of exam-style questions will challenge the students to use this formula and to manipulate it and to work out the percentage change. The final part of the lesson looks at the adaptation of the heart to aerobic training in the form of cardiac hypertrophy and then the students are challenged to work out how this would affect the stroke volume, the cardiac output and the resting heart rate.
This lesson describes how the electron transport chain and the chemiosmosis are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover point 7.4 of the Edexcel International A-level Biology specification and also looks at the role of the enzyme, ATP synthase.
The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress.
This lesson has been specifically written to tie in with the other uploaded lessons on glycolysis, the link reaction and Krebs cycle.
This lesson reminds students of the meaning of homeostasis and describes the how thermoregulation maintains the body in dynamic equilibrium during exercise. The PowerPoint has been designed to cover point 7.17 of the Edexcel International A-level Biology specification.
Students were introduced to homeostasis at GCSE and this lesson has been written to build on that knowledge and to add the key detail needed at this level. Focusing on the three main parts of a homeostatic control system, the students will learn about the role of the internal and peripheral thermoreceptors, the thermoregulatory centre in the hypothalamus and the range of effectors which bring about the responses to restore optimum levels.
The following responses are covered in this lesson:
Vasodilation
Increased sweating
Body hairs
In each case, time is taken to challenge students on their ability to make links to related topics such as the arterioles involved in the redistribution of blood and the high specific latent heat of vaporisation of water.
This fully-resourced lesson describes the process of contraction of skeletal muscle in terms of the sliding filament theory. The PowerPoint and accompanying resources have been designed to cover point 7.11 of the Edexcel International A-level Biology specification and includes descriptions of the role of actin, myosin, troponin, tropomyosin, calcium ions, ATP and ATPase.
The lesson begins with a study of the structure of the thick and thin filaments. Students will recognise that the protruding heads of the myosin molecule are mobile and this enables this protein to bind to the binding sites when they are exposed on actin. This leads into the introduction of troponin and tropomyosin and key details about the binding of calcium to this complex is explained. Moving forwards, students are encouraged to discuss possible reasons that can explain how the sarcomere narrows during contraction when the filaments remain the same length. This main part of the lesson goes through the main steps of the sliding filament model of muscle contraction and the critical roles of the calcium ions and ATP are discussed. The final task of the lesson challenges the students to apply their knowledge by describing the immediate effect on muscle contraction when one of the elements doesn’t function correctly.
This lesson has been written to tie in with the previous lesson on the structure of skeletal muscle fibre (point 7.10)
This lesson describes the extracellular action of peptide hormones and the role played by steroid hormones in binding to DNA transcription factors. The detailed PowerPoint and accompanying resources have been designed to cover point 7.22 of the Edexcel International A-level Biology specification and focuses on the differing effects of these two types of hormones on their target cells
Students should have a base knowledge of the endocrine system from GCSE so this lesson has been planned to build on that knowledge and to add the detail needed at this level. The lesson begins by challenging this knowledge to check that they understand that endocrine glands secrete these hormones directly into the blood. Students will learn that most of the secreted hormones are peptide (or protein) hormones and a series of exam-style questions are used to challenge them on their recall of the structure of insulin as well as to apply their knowledge to questions about glucagon. Moving forwards, the students are reminded that hormones have target cells that have specific receptor sites on their membrane. The relationship between a peptide hormone as a first messenger and a second messenger on the inside of the cell is covered in detail in an upcoming lesson but students are briefly introduced to G proteins and cyclic AMP so they are prepared. The rest of the lesson focuses on steroid hormones and specifically their ability to pass through the membrane of a cell and to bind to transcription factors, as exemplified by oestrogen. Students covered transcription and the control of gene expression in topics 2 and 3 so the final tasks challenge their recall of these concepts
This fully resourced lesson describes how coordination is brought about through nervous and hormonal control in animals. The detailed PowerPoint and accompanying resources have been primarily designed to cover point 8.7 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but it can also be used as a revision lesson as there are numerous prior knowledge checks of the nervous system, muscle contraction, protein structure and the control of gene expression.
The lesson begins by challenging the students to recall that a control system contains sensory receptors, a coordination centre and effectors. The students will learn that the communication between these components is by cell signalling and that the effectors can be muscles which contract or glands that release chemicals. The next part of the lesson looks at the differing responses from the nervous and hormonal systems and discusses how this can be governed by the need for a rapid response or more of a long term effect. In terms of nervous control, the students are challenged on their recall of the sliding filament theory of muscle contraction as covered in topic 7. Moving forwards, the students will learn that hormones can be either peptide or steroid hormones and their action at a target cell differs based on their form. Students are tested on their knowledge of protein structure by a series of exam-style questions on insulin and glucagon. They are reminded that steroid hormones can pass directly through the cell membrane and their knowledge of the control of gene expression by transcription factors is tested through a task involving oestrogen and the ER receptor. The lesson concludes by reminding students that the control of heart rate, as covered in topic 7, is a coordinated response that involves both nervous and hormonal control.
This fully-resourced lesson describes how rod cells in the mammalian retina detect stimuli to allow vision in low light intensity. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 8.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and includes reference to the roles of rhodopsin, opsin, retinal, sodium ions, cation channels and hyperpolarisation in the formation of action potentials in the optic neurones.
It is likely that students will be aware that the human retina contains rod and cone cells, so this lesson builds on that knowledge and adds the detail needed at this level. Students will discover that the optical pigment in rod cells is rhodopsin and that the bleaching of this into retinal and opsin results in a cascade of events that allows an action potential to be initiated along the optic nerve. Time is taken to go through the events that occur in the dark and then the students are challenged to use this as a guide when explaining how the events differ in the light. Key terms like depolarisation and hyperpolarisation, that were met earlier in topic 8, are used to explain the changes in membrane potential and the resulting effect on the connection with the bipolar and ganglion cells is then described.
This lesson describes how the sensory receptors of the nervous system detect stimuli by transducing different forms of energy into electrical energy. The PowerPoint has been designed to cover the content of the 1st part of specification point 8.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and acts as an introduction to the next lesson where the roles of the rod cells in the retina is described.
The lesson begins by using a quiz to get the students to recognise the range of stimuli which can be detected by receptors. This leads into a task where the students have to form 4 sentences to detail the stimuli which are detected by certain receptors and the energy conversion that happen as a result. Students will be introduced to the idea of a transducer and learn that receptors always convert to electrical energy which is the generator potential. The remainder of the lesson focuses on the Pacinian corpuscle and how this responds to pressure on the skin, resulting in the opening of the sodium channels and the flow of sodium ions into the neurone to cause depolarisation.