Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Sensory and motor neurones
GJHeducationGJHeducation

Sensory and motor neurones

(0)
This is a fast-paced lesson that explores the structural differences (and similarities) between sensory and motor neurones. The lesson uses a range of tasks, progress checks and quick competitions to enable the students to recognise how these neurones differ in terms of the cell body, axon and dendron. Students will also understand that both neurones are myelinated which allows saltatory conduction to occur. Relay neurones are briefly discussed during the final section of the lesson. This lesson has primarily been designed for A-level students but can be used with the content means that it is suitable for use with GCSE students too who are studying the nervous system.
The PCR (CIE International A-level Biology)
GJHeducationGJHeducation

The PCR (CIE International A-level Biology)

(0)
This lesson explains how the polymerase chain reaction (PCR) is used to clone and amplify DNA fragments as part of the recombinant DNA technology process. The PowerPoint has been designed to cover point 19.1 © of the CIE International A-level Biology specification and there is a particular emphasis on the use of Taq polymerase as opposed to human DNA polymerase A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss the possible identity of the enzyme involved and to recall the action of this enzyme. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so the next part of this lesson focuses on each temperature and specifically the reasons behind the choice. Time is taken to examine the key points in detail, such as why Taq polymerase has to be used as it is not denatured at the high temperature as well as the involvement of the primers. This process is closely linked to other techniques like electrophoresis which is covered in a later lesson and ties are continuously made throughout the lesson
Oxidative phosphorylation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Oxidative phosphorylation (Edexcel A-level Biology B)

(0)
This clear and detailed lesson describes how ATP is formed by chemiosmosis during the process of oxidative phosphorylation. The PowerPoint has been designed to cover all of the specification points under point 5.4 of the Edexcel A-level Biology B specification and includes details of the electron transport chain, proton gradients and ATP synthase including the roles of the electron carriers, the mitochondrial membranes and oxygen. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 detailed steps and at each point, key facts are discussed and explored in further detail to enable a deep understanding to be developed. Students will see how the proton gradient across the inner membrane is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP by oxidative phosphorylation. Understanding checks are included throughout the lesson to enable the students to assess their progress and prior knowledge checks allow them to recognise the clear links to other topics and modules. This lesson has been written to tie in with the other uploaded lessons on the previous stages of aerobic respiration - glycolysis, the Link reaction and the Krebs cycle.
The use of the PCR to amplify DNA (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The use of the PCR to amplify DNA (Edexcel Int. A-level Biology)

(0)
This lesson explains how the polymerase chain reaction (PCR) is used to amplify DNA. The PowerPoint has been designed to cover point 6.17 of the Edexcel International A-level Biology specification. A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss the identity of the enzyme involved and to recall the action of this enzyme. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so the next part of this lesson looks at these particular temperatures so the important parts of each of the steps can be understood. Time is taken to examine the key points in detail, such as the specific DNA polymerase that is used and how it is not denatured at the high temperature as well as the involvement of the primers.
Structure of viruses (WJEC A-level Biology)
GJHeducationGJHeducation

Structure of viruses (WJEC A-level Biology)

(0)
This engaging lesson describes the structures of virus particles and explains why viruses are described as acellular and non-living. The PowerPoint and accompanying resource are part of the second lesson in a series of 2 lessons which have been designed to cover the detail of specification point (b) in AS unit 1, topic 2 of the WJEC A-level Biology specification Details of the COVID-19 epidemic are included in the lesson to increase relevance and to help students to understand this biological topic in greater depth. They will understand that the lack of cell structures results in an acellular classification and the fact that it is unable to reproduce without a host is one of the additional reasons that renders it as non-living. The main focus of the lesson is the nucleic acid, the capsid and the attachment proteins that are present in these microorganisms and time is taken to explain how these structures are involved in the infection of a host cell. The lipid membrane is also introduced and links are made to the previous lessons on eukaryotic cells. The final section uses a version of BBC 1’s POINTLESS to introduce a number of viral diseases in animals and the use of a glycoprotein by HIV to attach to helper T cells is briefly introduced so students are prepared for the immunology option if taken
Human heart (WJEC A-level Biology)
GJHeducationGJHeducation

Human heart (WJEC A-level Biology)

(0)
This lesson describes the structure and function of the human heart and names the blood vessels associated with this organ . The PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons that have been designed to cover point (b) in topic 3 of AS unit 2 of the WJEC A-level Biology specification As this topic was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 3 including those which have already been covered like circulatory systems as well as those which are upcoming such as the initiation of heart action. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time.
Chromosome mutations (WJEC A-level Biology)
GJHeducationGJHeducation

Chromosome mutations (WJEC A-level Biology)

(0)
This engaging lesson describes how chromosome mutations result in changes to the number or structure of chromosomes The PowerPoint and accompanying resources are part of the second lesson in a series of 2 lessons that have been designed to cover specification points (f) in topic 3 of A2 unit 4 of the WJEC A-level Biology specification, and there is a key focus on Down syndrome A human karyotype which has not been altered by a mutation is studied at the start of the lesson to allow students to recall the usual number of chromosomes as well as the sex chromosomes. They are then challenged to identify the differences when presented with the karyotypes of sufferers of Down, Turner’s and Klinefelter’s syndrome. Students will learn that in the majority of cases, these conditions are the result of non-disjunction and having been assisted in the explanation of the outcome for Down and Klinefelters, they have to form their own for Turner’s. The remainder of the lesson looks at other types of mutations, including translocation, and students will also see how whole sets of chromosomes can be duplicated in polyploidy
The effect of pH on enzymes (AQA A-level Biology)
GJHeducationGJHeducation

The effect of pH on enzymes (AQA A-level Biology)

(0)
This lesson describes the effects of pH on the rate of enzyme-controlled reactions. The PowerPoint and accompanying resources are part of the third lesson in a series of 5 lessons which have been designed to cover the content of point 1.4.2 (Many proteins are enzymes) of the AQA A-level Biology specification. The lesson begins with a short discussion, where the students are challenged to identify how the stomach and the small intestine differ in terms of a particular condition and to explain why the conditions in these neighbouring digestive organs are so important. This introduces pepsin and trypsin and these protease enzymes play a key role throughout the lesson as they are good examples of how different extracellular enzymes have different optimum pH values (which are not necessarily 7.0). Moving forwards, students will discuss how the rate of an enzyme-controlled reaction will change if there are small or large changes in pH, and then time is taken to ensure that students can explain these changes with reference to tertiary structure bonds and the shape of the active site. Through the use of a quick quiz competition, the students will be reminded of the key term “buffer” and a series of questions are used to challenge their understanding of how these substances could be used in a practical investigation. They will also learn how buffers are found in blood plasma as well as in red blood cells in the form of haemoglobin. With there being such a large proportion of marks for Maths in a Biology context questions in the AQA assessments, the remainder of the lesson challenges the students to use a given formula to calculate the pH of blood when given the hydrogen ion concentration and to calculate percentage decrease. These questions have been differentiated to give assistance to those that need the support
Gas exchange between the alveoli and blood (CIE A-level Biology)
GJHeducationGJHeducation

Gas exchange between the alveoli and blood (CIE A-level Biology)

(0)
This lesson describes the process of gas exchange between air in the alveoli and the blood. The PowerPoint and accompanying worksheet have been designed to cover point 9.1 (d) of the CIE A-level Biology specification Gas exchange at the alveoli is a topic that was covered at GCSE so this lesson has been written to challenge the recall of that knowledge and to build on it. The main focus of the lesson is the type of epithelium found lining the alveoli and students will discover that a single layer of flattened cells known as simple, squamous epithelium acts to reduce the diffusion distance. The following features of the alveolar epithelium are also covered: Surface area Moist lining Production of surfactant The maintenance of a steep concentration gradient As a constant ventilation supply is critical for the maintenance of the steep concentration gradient, the final part of the lesson considers the mechanism of ventilation
Synapses (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Synapses (Edexcel Int. A-level Biology)

(0)
This lesson describes the structure and function of synapses in nerve impulse transmission and focuses on acetylcholine as a neurotransmitter. The PowerPoint and accompanying resources have been designed to cover point 8.6 (i) of the Edexcel International A-level Biology specification, using a cholinergic synapse as the main example The lesson begins by using a version of the WALL from “Only Connect” which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this topic but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to acetylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics.
Formation of tissue fluid (WJEC A-level Biology)
GJHeducationGJHeducation

Formation of tissue fluid (WJEC A-level Biology)

(0)
This lesson describes how tissue fluid is formed and reabsorbed in order to emphasise its importance as the link between the blood and cells. The PowerPoint and accompanying resources have been designed to cover point (h) in topic 3 of AS unit 2 of the WJEC A-level Biology specification and explains how a combination of the effects of hydrostatic pressure and oncotic pressure results in the formation of tissue fluid in animals. The lesson begins with an introduction to the arteriole and venule end of a capillary as these will need to be considered as separate entities when describing the formation of tissue fluid. A quick quiz competition introduces a value for the hydrostatic pressure at the arteriole end and students are challenged to first predict some parts of the blood will move out of the capillary as a result of the push from the hydrostatic pressure and this allows oncotic pressure to be initially explored. The main part of the lesson uses a step by step guide to describe how the net movement is outwards at the arteriole end before students will use this guidance to describe what happens at the venule end. In the concluding part of the lesson, students will come to recognise oedema as a condition where tissue fluid accumulates and they again are challenged to explain how this occurs before they finally learn how the fluid is returned to the circulatory system as lymph
Reabsorption in the proximal tubule (WJEC A-level Biology)
GJHeducationGJHeducation

Reabsorption in the proximal tubule (WJEC A-level Biology)

(0)
This lesson describes how the cells of the proximal tubule in the nephron of the kidney are adapted for reabsorption. The PowerPoint and accompanying resource which is filled with tasks have been designed to cover specification point [e] in topic 7 of A2 unit 3 of the WJEC A-level Biology specification and builds on the knowledge gained in the previous lessons on the structure of the nephron and the functions of the mammalian kidney. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the proximal tubule and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water.
HORMONES as chemical messengers (WJEC GCSE Biology)
GJHeducationGJHeducation

HORMONES as chemical messengers (WJEC GCSE Biology)

(0)
This lesson has been designed to cover the content set out in specification point 2.5 (g) of the WJEC GCSE Biology specification which states that students should understand that hormones are chemical messengers which control many body functions. A wide range of activities have been written into the lesson with the aim of engaging and motivating the students whilst ensuring that the content is covered in detail. These activities include a number of quiz competitions which will challenge the students to identify an endocrine organ when presented with three organs as well as introducing them to the names of some of the hormones released by the pituitary gland. The following content is covered in this lesson: The location of the pituitary, adrenal and thyroid glands in the human body The location of the pancreas, ovaries and testes in the human body The hormones which are secreted by the endocrine glands The effects of the hormones on their target organs This lesson has been written for GCSE-aged students who are studying on the WJEC Biology course but it is suitable for younger students who are looking at this as one of the different organ systems
The control of BLOOD GLUCOSE (WJEC GCSE Biology)
GJHeducationGJHeducation

The control of BLOOD GLUCOSE (WJEC GCSE Biology)

(0)
This concise lesson presentation and accompanying worksheet have been designed to cover the content of point 2.5 (h) of the WJEC GCSE Biology specification which states that students should understand the need to keep blood glucose levels within a constant range. Homeostasis is a running theme throughout the 2.5 topic so this lesson builds on knowledge from earlier topics to ensure that there is a deep understanding. The lesson begins by introducing glucose and a quiz competition will lead to the range 4 - 7, so that students can recognise that this is the set range within which this molecule’s concentration must be kept. Time is taken to look at some of the health problems that are associated with an increase in concentration above this upper limit and the general Biological knowledge of the students is tested with some questions. Moving forwards, the main task of the lesson involves a step by step guide through the stages in the response to a high blood glucose concentration and shows the students how the release of insulin leads to the uptake of glucose from the blood and a conversion to glycogen by the liver and muscle cells. The summary task at the end challenges the students to bring all of the information together to write a detailed description of this response and this activity is differentiated to aid those students who need extra assistance. This lesson has been designed for students studying the WJEC GCSE Biology course but could be used with A-level students who are beginning this topic and need to recall the key details.
Structure & function of blood vessels (WJEC A-level Biology)
GJHeducationGJHeducation

Structure & function of blood vessels (WJEC A-level Biology)

(0)
This lesson describes how the structure of arteries, arterioles, capillaries, venules and veins in the mammalian circulatory system relate to their functions. The PowerPoint and accompanying resources are part of the second lesson in a series of 2 lessons which have been designed to cover specification point (b) of topic 3 in AS unit 2 of the WJEC A-level Biology A specification. The first lesson in this series covers the structure and function of the human heart and its associated blood vessels This lesson has been written to build on any prior knowledge from GCSE or earlier in this topic to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, it is quite likely that some students will not be aware of the transition vessels that are the arterioles. This section begins with an understanding of the need for these vessels because the structural and functional differences between arteries and capillaries is too significant. The action of the smooth muscle in the walls of these vessels is discussed and students will be challenged to describe a number of situations that would require blood to be redistributed. The middle part of the lesson looks at the role of the capillaries in exchange and links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. The remainder of the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels.
Osmosis (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Osmosis (AQA GCSE Biology & Combined Science)

(0)
This concise lesson has been designed to cover the content found in specification point 4.1.3.2 (Osmosis) of topic 1 of the AQA GCSE Biology & Combined Science specifications. This resource contains an engaging PowerPoint (23 slides) and accompanying worksheets, some of which have been differentiated to help students of different abilities to take on the task at hand. The lesson begins with the introduction of the term, osmosis, and then students are challenged to use their knowledge of diffusion to write a definition for this method of movement of water molecules. A series of questions which check understanding are included at this early point of the lesson to ensure that the key points are known and any misconceptions are quickly addressed. Students are also challenged with an application question as these can often cause them the most problems. Moving forwards, the rest of the lesson focuses on an osmosis investigation. Scientific skills are tested during a range of tasks as well as numerical skills and guidance is given on how to calculate percentage change. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but can be used with younger students who are keen to learn about osmosis
Fibrous & globular proteins (WJEC A-level Biology)
GJHeducationGJHeducation

Fibrous & globular proteins (WJEC A-level Biology)

(0)
This engaging lesson describes the relationship of the fibrous and globular structure of proteins to their function. The PowerPoint and accompanying resource have been primarily designed to cover specification point (j) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology course but due to the detailed coverage of haemoglobin, the start of this lesson could also be used when teaching lessons that cover specification points in AS unit 2, topic 3 on adaptations for transport By the end of the lesson, students will be able to describe that the interactions of the hydrophobic and hydrophilic R groups results in different shapes which differ in their solubility in water and be able to explain the importance of this property with reference to the individual functions of proteins, specifically collagen and haemoglobin. They will also be able to name key individual details for each protein, such as haemoglobin being a conjugated protein and collagen having repeating units and being wound into a triple helix Extra time has gone into the planning of this lesson to ensure that links are continuously made to previous topics such as amino acids and the levels of protein structure as well as to upcoming topics
Synapses (cholinergic)
GJHeducationGJHeducation

Synapses (cholinergic)

(0)
This is a concise, fast-paced lesson that has been designed to enable students to discover the key structural features of a synapse and be able to write accurate descriptions of the sequence of events that occur at these structures. The neurotransmitter involved is acetyl choline and therefore this is specifically a lesson about cholinergic synapses. The lesson begins by going through the terminology associated with synapses which includes pre-synaptic terminal or knob, synaptic cleft and post-synaptic neurone. Then time is taken to look at each of the two neurones and the structures found inside the terminal or on the membranes. The main task of the lesson involves a step by step guide through the sequence of events at the synapse. This guide has been written in a bullet point format and students are challenged to use the features they have met and their own Biological knowledge to complete each point. The final part of the lesson looks at how the enzyme acetylcholinesterase is involved in the breakdown and then how the neurotransmitter is re-formed using the ATP generated in the mitochondria This lesson is written for A-level students
Features of the alveoli (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Features of the alveoli (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes how the alveoli are adapted for gas exchange by diffusion between the air in the lungs and the blood capillaries. The PowerPoint and accompanying resource are part of the second lesson in a series of 2 which have been designed to cover the content of point 8.2 & 8.3 of the Edexcel GCSE Biology and Combined Science specifications. During the 1st lesson in this series, the students were shown how to calculate the surface area to volume ratio and so this lesson begins by challenging them to recall that the larger the organism, the smaller the ratio. This is done through the PLAY YOUR CARDS RIGHT format as shown in the cover picture, and leads into the key idea that complex multicellular organisms like humans have developed a range of different adaptations to increase this ratio at their exchange surfaces. Moving forwards, time is taken to consider and discuss how the following adaptations of the alveoli affect the rate of diffusion: large surface area lining of the alveoli consisting of a single layer of flattened cells maintenance of a steep concentration gradient Each feature is related to diffusion and current understanding and prior knowledge checks are used to allow the students to assess their progress and to challenge them to make links to other topics of the course. All exam questions have mark schemes embedded into the PowerPoint
Genetic inheritance (AQA GCSE Combined Science)
GJHeducationGJHeducation

Genetic inheritance (AQA GCSE Combined Science)

(0)
This lesson introduces and explains the meaning of 11 key terms associated with the genetic inheritance topic. The PowerPoint and accompanying resources have been designed to cover point 6.1.6 of the AQA GCSE Combined Science specification and include explanations of genome, chromosome, gene, allele, genotype, homozygous, heterozygous, phenotype, dominant, recessive and gamete. The key term, genome, was met earlier in topic 6 so the lesson begins with a knowledge retrieval with the definition for this term. As the genome is the entire DNA of an organism, the next task challenges the students to identify three errors in a passage about DNA. This challenges their recall of the structure of this chemical as a double helix, its location in an eukaryotic cell in the nucleus and an understanding that the gene codes for the sequence of amino acids in a specific protein. This leads into discussions about chromosomes and genes and time is taken to explain that homologous chromosomes have the same genes at the exact same gene loci. The students will learn that alternative forms of the gene (alleles) can be found at these loci and that these structures explain the differences in inherited characteristics. Moving forwards, the main section of the lesson describes the link between the dominant and recessive alleles, homozygous and heterozygous genotypes, and the physical expression as the phenotype. The final key term is gamete, and the students are challenged to recognise a definition for this term using their knowledge of meiosis. Two progress and understanding checks complete the lesson and check on the students’ ability to recognise and write definitions for these 11 terms and to use them accurately in a written description