Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1119k+Views

1927k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Transcription factors (AQA A-level Biology)
GJHeducationGJHeducation

Transcription factors (AQA A-level Biology)

(0)
This fully-resourced lesson explains how the transcription of target genes can be stimulated or inhibited by transcription factors. Both the PowerPoint and the accompanying resources have been designed to cover the first part of point 8.2.2 of the AQA A-level Biology specification and links are continuously made throughout the lesson to the topic of protein synthesis which was covered in topic 4.2. The lesson begins with a recall of the meaning of the terms genome and proteome so that a discussion can begin on whether a cell wants to express every gene and produce all of the possible proteins all of the time. As the answer to this is no, the idea of transcription factors is introduced. In order to fully understand this topic, students need to recall that the role of the promoter region is to bind RNA polymerase to initiate transcription. Students will learn that the factors have a DNA-binding domain and that some also have ligand-binding domains which allow molecules like hormones to bind. Moving forwards, the students are introduced to a group of substances called DELLA proteins which inhibit plant development. The way that transcription begins once the inhibition by the proteins has been removed is similar to the action of oestrogen and students are able to use this information as a guide during the final task where they have to order the sequence of events that take place once this steroid hormone binds to its transcription factor.
Using genome projects (AQA A-level Biology)
GJHeducationGJHeducation

Using genome projects (AQA A-level Biology)

(0)
This fully-resourced lesson explores how projects to sequence the genomes of both simple and complex organisms can be used. Both the detailed PowerPoint and accompanying resources have been designed to cover the content of point 8.3 of the AQA A-level Biology specification. The start of the lesson describes each step of Sanger’s chain termination method and demonstrates how this method has paved the way for other projects. The use of the modified nucleotides are explained and links are made to the topic 4 and 2 where protein synthesis and DNA replication were first introduced. Students will learn how the radioactively-labelled nucleotide at the end of each fragment allows the next base to be determined. Key processes like gel electrophoresis are introduced and details provided to support the students when this is encountered in greater detail in 8.4.3. Moving forwards, the applications of sequencing in simple organisms like viruses and bacteria are explored and the students are challenged on their prior knowledge of bacterial pathogenesis and current understanding of sequencing through a series of exam-style questions. The final part of the lesson looks at the difficulties of translating genome knowledge into proteome knowledge and considers the development of automated methods. Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover all of the points which have been written into the various tasks
Topics 8.3 & 8.4: Genome projects and gene technologies (AQA A-level Biology)
GJHeducationGJHeducation

Topics 8.3 & 8.4: Genome projects and gene technologies (AQA A-level Biology)

5 Resources
All 5 of the lessons which are included in this bundle have been written to cover the detailed content of topics 8.3 and 8.4 of the AQA A-level Biology specification. These topics can provide a series of problems for students so clear explanations are used throughout the lesson as well as regular understanding checks so any misconceptions are immediately addressed. The variety of tasks will maintain engagement whilst displayed mark schemes allow students to assess their answers and add detail where it is missing. The following specification points are covered: 8.3: Using genome projects 8.4.1: Recombinant DNA technology 8.4.3: Genetic fingerprinting If you would like to sample the quality of the lessons first, why not download the lesson on producing DNA fragments which has been uploaded for free
AQA GCSE Combined Science FOUNDATION TIER REVISION (Papers 1 - 6)
GJHeducationGJHeducation

AQA GCSE Combined Science FOUNDATION TIER REVISION (Papers 1 - 6)

6 Resources
This bundle of 6 revision lessons challenges the students on their knowledge of the content of topics B1 - B7, C1 - C10 and P1 - P7 of the AQA GCSE Combined Science specification which will be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics. The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content. If you would like to see the quality of these lessons, download the paper 2 and 5 revision lessons as these have been shared for free.
Phloem structure (AQA A-level Biology)
GJHeducationGJHeducation

Phloem structure (AQA A-level Biology)

(0)
This engaging lesson describes how the structure of the phloem enables this vascular tissue to transport organic substances in plants. Both the detailed PowerPoint and accompanying resource have been designed to cover the 3rd part of point 3.4.2 (Mass transport in plants) of the AQA A-level Biology specification. Comparative questions between the xylem and phloem are very common so the lesson begins by challenging the students to use their prior knowledge to complete the xylem column of a table with details including the presence of lignin and bordered pits and specific substances which are transported in this tissue. This has been written into the lesson to encourage the students to start to think about how the structure and function of the phloem may compare. 3 quiz rounds have been included in the lesson to maintain motivation and to introduce key terms. The first of these rounds will challenge the students to be the first to recognise descriptions of sucrose and amino acids as they learn that these are the two most common assimilate, which are the substances transported by the phloem. The focus of this lesson is the relationship between structure and function and all descriptions have these two parts highlighted to support the students to recognise the link. Moving forwards, students will be introduced to the sieve tube elements and the companion cells and time is taken to consider why the structure of these cells are so different. Current understanding checks are interspersed throughout the lesson to ensure that any misconceptions can be quickly addressed. The plasmodesmata is described to allow students to understand how assimilates move from the companion cells to the sieve tube elements as this will be particularly important for the next lesson on translocation. The final task of the lesson challenges the students to write a detailed passage about the structure and function of the phloem, incorporating all of the information that they have absorbed throughout the course of the lesson.
Movement up the xylem (CIE International A-level Biology)
GJHeducationGJHeducation

Movement up the xylem (CIE International A-level Biology)

(0)
This fully-resourced lesson describes how the mechanisms of root pressure and transpiration pull move water upwards in the xylem to the leaves. The detailed PowerPoint and accompanying, differentiated resources have primarily been designed to cover the second part of point 7.2 [c] of the CIE International A-level Biology specification but also cover 7.2 [b] as the cohesion-tension theory and adhesion are described and explained. This lesson has been written to follow on from the end of the previous lesson, which finished with the description of the transport of the water and mineral ions from the endodermis to the xylem. Students are immediately challenged to use this knowledge to understand root pressure and the movement by mass flow down the pressure gradient. Moving forwards, time is taken to study the details of transpiration pull and the interaction between cohesion, tension and adhesion in capillary action is explained. Understanding is constantly checked through a range of tasks and prior knowledge checks are also written into the lesson to challenge the students to make links to previously covered topics such as the structure of the transport tissues. The final part of the lesson considers the journey of water through the leaf and ultimately out of the stomata in transpiration. A step by step guide using questions to discuss and answer as a class is used to support the students before the final task challenges them to summarise this movement through the leaf.
Transport of water into the plant (OCR A-level Biology)
GJHeducationGJHeducation

Transport of water into the plant (OCR A-level Biology)

(0)
This detailed lesson describes the transport of water into the plant as well as the movement across the cortex to the endodermis and to the xylem. Both the engaging PowerPoint and accompanying resource have been designed to cover the first part of point 3.1.3 (d) as detailed in the OCR A-level Biology A specification. The lesson begins by looking at the specialised features of the root hair cell so that students can understand how these epidermal cells absorb water and mineral ions from the soil. Moving forwards, students are introduced to key terminology such as epidermis and root cortex before time is taken to look at the symplast, vacuolar and apoplast pathways that water and minerals use to transverse the cortex. Discussion points are included throughout the lesson to encourage the students to think about each topic in depth and challenges them to think about important questions such as why the apoplast pathway is needed for the water carrying the ions. The main part of the lesson focuses on the role of the endodermis in the transport of the water and ions into the xylem. Students will be introduced to the Casparian strip and will learn how this layer of cells blocks the apoplast pathway. A step by step method using class questions and considered answers is used to guide them through the different steps and to support them when writing the detailed description. This lesson has been specifically written to tie in with the next lesson on the pathways and mechanisms by which water and mineral ions are transported to the leaves and then out into the air surrounding the leaves.
Mass transport in plants (AQA A-level Biology)
GJHeducationGJHeducation

Mass transport in plants (AQA A-level Biology)

3 Resources
All 3 of the lessons that are included in this bundle are detailed and fully-resourced with differentiated worksheets to cover the content of topic 3.4.2 (Mass transport in plants) as set out in the AQA A-level Biology specification. Some students do not fully engage with this topic and therefore time has been taken to design each lesson so that it maintains motivation through a wide range of tasks. These tasks include quiz competitions which introduce key terms in a memorable way. The specification points that are covered in these three lessons are: Xylem as the tissue that transports water in the stem and leaves of a plant The cohesion-tension theory of water transport in the xylem Phloem as the tissue that transports organic substances in plants The mass flow hypothesis for the mechanism of translocation in plants If you would like to see the quality of these lessons, download the translocation lesson as this has been shared for free.
Water transport in the xylem (AQA A-level Biology)
GJHeducationGJHeducation

Water transport in the xylem (AQA A-level Biology)

(0)
This fully-resourced lesson describes how the structure of the xylem tissue allows water to be transported in the stem and leaves. Written for AQA A-level Biology, the engaging and detailed PowerPoint and the accompanying worksheets cover the 1st part of specification point 3.4.2 (mass transport in plants) and includes a detailed description of the cohesion-tension theory. The first part of the lesson focuses on the relationship between the structure and function of the xylem tissue. A number of quiz competitions have been included in the lesson to maintain engagement and to introduce key terms. The 1st round does just that and results in the introduction of lignin which leads into the explanation of how the impregnation of this substance in the cell walls result in the death and subsequent decay of the cell structures. Students are encouraged to discuss how the formation of this hollow tube enables the transport of water to be effective. Moving forwards, other structures such as the bordered pits are introduced and an understanding of their function is tested later in the lesson. The remainder of the lesson focuses on the transport of water in the stem and leaves by root pressure and the transpiration pull, which includes cohesion, tension and adhesion. The lesson has been designed to make links to information covered earlier in the lesson as well to topics from earlier in the specification such as cell structures and biological molecules Due to the extensiveness of this lesson, it is estimated that it will take in excess of 2/3 A-level teaching hours to cover the detail included in this lesson.
Topic 6.1: Structure and replication of DNA (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 6.1: Structure and replication of DNA (CIE International A-level Biology)

4 Resources
All 4 of the lessons included in this bundle are fully-resourced with differentiated tasks to cater for all abilities of students whilst containing the detail to push them to the next level. These lessons have been designed to cover the details of topic 6.1 of the CIE International A-level Biology specification which concerns the structure and replication of DNA The following specification points are covered within these lessons: The structure of nucleotides ATP as a phosphorylated nucleotide The structure of DNA The structure of mRNA, tRNA and rRNA DNA replication Links are continually made throughout the lessons to previously-covered topics as well as to those which will be covered later in the AS course or during the second year If you would like to sample the quality of the lessons, download the semi-conservative replication lesson as this has been shared for free
Monosaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Monosaccharides (AQA A-level Biology)

(0)
Monosaccharides are the monomers from which larger carbohydrates are formed and this lesson describes their structure and roles in living organisms. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the first part of point 1.2 of the AQA A-level Biology specification and looks at alpha-glucose, beta-glucose, galactose, fructose, deoxyribose and ribose. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. Using the molecular formula of glucose as a guide, students will be given the general formula for the monosaccharides and will learn that deoxyribose is an exception to the rule that the number of carbon and oxygen atoms are equal. Moving forwards, students have to study the displayed formula of glucose for two minutes without being able to note anything down before they are challenged to recreate what they saw in a test of their observational skills. At this point of the lesson, the idea of numbering the carbons is introduced so that the different glycosidic bonds can be understood in an upcoming lesson as well as the recognition of the different isomers of glucose. The difference between alpha and beta-glucose is provided and students are again challenged to draw a molecule of glucose, this time for the beta form. The remainder of the lesson focuses on the roles of the 6 monosaccharides and the final task involves a series of application questions where the students are challenged to suggest why ribose could be considered important for active transport and muscle contraction
Structure of DNA & RNA (AQA A-level Biology Topic 1)
GJHeducationGJHeducation

Structure of DNA & RNA (AQA A-level Biology Topic 1)

(0)
This detailed and engaging lesson describes the structural similarities and differences between DNA and RNA. The PowerPoint and accompanying worksheet containing exam-style questions have been designed to cover point 1.5.1 of the AQA A-level Biology specification. In the first lesson of topic 1, the students were introduced to a number of monomers which included a nucleotide. In line with this, the start of the lesson challenges them to recognise the key term nucleotide when only the letters U, C and T are shown. The next part of the lesson describes the structure of a DNA nucleotide and an RNA nucleotide so that the pentose sugar and the bases adenine, cytosine and guanine can be recognised as similarities whilst deoxyribose and ribose and thymine and uracil are seen as the differences. Time is taken to discuss how a phosphodiester bond is formed between adjacent nucleotides and their prior knowledge and understanding of condensation reactions is tested through a series of questions. Students are then introduced to the purine and pyrimidine bases and this leads into the description of the double-helical structure of DNA and the hydrogen bonds between complementary bases. The final section of the lesson describes the structure of mRNA, tRNA and rRNA and students are challenged to explain why this single stranded polynucleotide is shorter than DNA In addition to the current understanding and prior knowledge checks, a number of quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the final round acts as a final check on the structures of DNA and RNA.
Phospholipids (AQA A-level Biology)
GJHeducationGJHeducation

Phospholipids (AQA A-level Biology)

(0)
This engaging lesson describes the relationship between the structure and properties of a phopholipid and explains the link to its role in membranes. The PowerPoint has been designed to cover the second part of point 1.3 of the AQA A-level Biology specification and includes constant references to the previous lesson on triglycerides. The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called FAMILY AFFAIR, challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lesson in topic 2 on the fluid mosaic model. The final part of the lesson explains how both facilitated diffusion and active transport mean that proteins are found floating in the cell membrane and this also helps to briefly prepare the students for upcoming topic 2 lessons.
DNA replication (AQA A-level Biology)
GJHeducationGJHeducation

DNA replication (AQA A-level Biology)

(0)
This fully-resourced lesson describes the process of DNA replication and explains how this ensures genetic continuity between generations. Both the detailed PowerPoint and accompanying resources have been designed to cover point 1.5.2 of the AQA A-level Biology specification and also explains why it is known as semi-conservative. The main focus of this lesson is the roles of DNA helicase in the breaking the hydrogen bonds between nucleotide bases and DNA polymerase in forming the growing nucleotide strands. Students are also introduced to DNA ligase to enable them to understand how this enzyme functions to join the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
Topic 1: Biological molecules (AQA A-level Biology)
GJHeducationGJHeducation

Topic 1: Biological molecules (AQA A-level Biology)

20 Resources
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 7 AQA A-level Biology topics. Many hours of intricate planning has gone into the design of all of the 20 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: Monomers and polymers Condensation and hydrolysis reactions Common monosaccharides Maltose, sucrose and lactose The structure and functions of glycogen, starch and cellulose Biochemical tests using Benedict’s solution for reducing sugars and non-reducing sugars and iodine/potassium iodide for starch The structure and properties of triglycerides and phospholipids The emulsion test for lipids The structure of amino acids The formation of dipeptides and polypeptides The levels of protein structure The biuret test for proteins Enzymes act as biological catalysts The induced-fit model of enzyme action The properties of an enzyme The effect of temperature on the rate of an enzyme-controlled reaction The effect of enzyme and substrate concentration on the rate of an enzyme-controlled reaction The effect of competitive and non-competitive inhibitors on the rate of an enzyme-controlled reaction The structure of DNA and RNA The semi-conservative replication of DNA ATP as the universal energy currency The properties of water and its importance in Biology Inorganic ions Due to the detail of each of these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content. If you would like to see the quality of the lessons, download the monomers and polymers, polysaccharides, triglycerides, dipeptides and polypeptides and inorganic ions lessons as these have been shared for free
Competition and Interdependence
GJHeducationGJHeducation

Competition and Interdependence

(0)
A detailed and engaging lesson presentation (52 slides) and accompanying worksheet that looks at competition between organisms and the different types of relationships that exist as a result of this interaction. The lesson begins by looking at the meaning of the biological term, "competition", and then introduces this when it occurs between the same species and different species. Students are challenged to consider the different resources that animals compete for before an activity based competition is used to get them to recognise how this competition can cause changes to the population size. Moving forwards, students will meet the three main types of ecological relationship and look at them in greater detail, with predation being a main focus. There are regular progress checks throughout the lesson (with displayed answers) so that students can assess their understanding. This lesson has been designed for GCSE students but can be used with more-able KS3 students who are looking at ecosystems and the relationships that exist within them
Edexcel A-level Biology Topic 2 REVISION (Genes and Health)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 2 REVISION (Genes and Health)

(0)
A highly engaging lesson presentation (60 slides) and accompanying worksheets that uses exam questions (with explained answers), quick tasks and competitions to allow students to assess their understanding of the topic of Genes and Health (Topic 2). Students will have fun whilst recognising those areas of the specification which need further attention. Competitions include "Blockbusters" Hotseat" and "james BOND" so that literacy and numeracy skills are tested along with the content knowledge.
The Variables (Scientific Skills)
GJHeducationGJHeducation

The Variables (Scientific Skills)

(0)
An informative lesson presentation (30 slides) that ensures that students know the meaning of the independent, dependent and control variables in an investigation and are able to identify them. Students are challenged to use their definitions to spot the independent and dependent variable from an investigation title. Moving forwards, they are shown how they can use tables and graphs to identify them. The rest of the lesson focuses on the control variables and how these have to be controlled to produce valid results This lesson is suitable for students of all ages studying Science as it is such a key skill
Rearranging the formula (Maths in Science)
GJHeducationGJHeducation

Rearranging the formula (Maths in Science)

(0)
An informative lesson presentation (37 slides) and accompanying worksheets that guides students through the different methods that can be used to rearrange formulae as they will be required to do in the Science exams. The lessons shows them how to use traditional Maths methods involving inverse operations and also equation triangles to come to the same result. These are constantly linked to actual examples and questions to show them how this has to be applied. There are regular progress checks, with explained answers, so that students can assess their understanding.
AQA GCSE Biology Unit B4 REVISION (Bioenergetics)
GJHeducationGJHeducation

AQA GCSE Biology Unit B4 REVISION (Bioenergetics)

(0)
An engaging lesson presentation (68 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B4 (Bioenergetics) of the AQA GCSE Biology specification (specification unit B4.4). The topics that are tested within the lesson include: Photosynthesis reaction Rate of photosynthesis Uses of glucose from photosynthesis Aerobic respiration Anaerobic respiration Response to exercise Students will be engaged through the numerous activities including quiz rounds like “Take a STEP back” and “Shine a LIGHT on the errors” whilst crucially being able to recognise those areas which need further attention