Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1119k+Views

1927k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Gel electrophoresis (OCR A-level Biology)
GJHeducationGJHeducation

Gel electrophoresis (OCR A-level Biology)

(0)
This fully-resourced lesson explains how gel electrophoresis is used to separate DNA fragments or proteins and explores its applications in genetic fingerprinting. The engaging and detailed PowerPoint and accompanying resources have been written to cover point 6.1.3 (e) of the OCR A-level Biology A specification The steps of the genetic fingerprinting process is covered the whole lesson but the main focus is the use of gel electrophoresis within this process. Students will be introduced to STRs and will come to recognise their usefulness in human identification as a result of the variability between individuals. Moving forwards, the involvement of the PCR is discussed and students are challenged on their knowledge of this process as it was encountered in a previous lesson. A brief outline of the role of restriction enzymes is provided to support students when these key gene technology enzymes are met in more detail later in the module. The main section of the lesson focuses on the use of gel electrophoresis to separate DNA fragments (as well as proteins) and the key ideas of separation due to differences in base pair length or molecular mass are discussed and explained. As well as current understanding checks, an application question involving Huntington’s disease is used to challenge their ability to apply their knowledge of the process to an unfamiliar situation. The remainder of the lesson describes how the DNA is transferred to a membrane and hybridisation probes are used to create a pattern on the X-ray film. Time has been taken to make continuous links to the previous lessons in module 6.1.3 as well as those from module 2.1.3 where DNA, RNA and protein synthesis were introduced.
CIE IGCSE Biology Topic 11 & 12 REVISION (Gas exchange in humans & respiration)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 11 & 12 REVISION (Gas exchange in humans & respiration)

(0)
This revision resource has been designed to cover the content in both topic 11 (Gas exchange) and topic 12 (Respiration) of the CIE IGCSE Biology specification for examination in June and November 2020 and 2021. The topics have been combined because of the huge crossover and the aim was to encourage students to see those connections and to make the Biological links. The resource contains an engaging and detailed PowerPoint (77 slides) and associated worksheets, some of which have been differentiated to provide assistance for those students who need it. Included in the resource are exam questions, quick tasks and quiz competitions which try to cover as much content as possible with the following areas receiving particular attention: The internal and external structure of the trachea The structure of the alveoli to allow efficient gas exchange The role of the ribs, intercostal muscles and diaphragm in ventilation The differences in composition between inspired and expired air Aerobic respiration in seeds The uses of energy in the body of humans Anaerobic respiration and the oxygen debt This resource contains a large emphasis on the mathematical element of the Biology course. Students are guided through key skills such as percentage change and then challenged to apply
CIE IGCSE Combined Science B3 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE IGCSE Combined Science B3 REVISION (Biological molecules)

(0)
This concise, engaging revision lesson has been designed to include activities that will motivate the students whilst they assess their understanding of topic B3 (Biological molecules) of the CIE IGCSE Combined Science specification. An understanding of biological molecules is fundamental to the understanding of a lot other Biology topics and this lesson has attempted to make the links between the different areas. The range of activities which include exam questions, quick tasks and quiz competitions have been written to cover as much of the content as possible but the following topics have received particular attention: The chemical elements in carbohydrates The formation of starch and glycogen from glucose The iodine test for starch Lipids are formed of fatty acids and glycerol Investigational skills The ethanol emulsion test for lipids This resource includes a PowerPoint (27 slides) and a worksheet with a task about the digestion of milk fat so students can recognise the components of lipids
The eye (AQA GCSE Biology)
GJHeducationGJHeducation

The eye (AQA GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 5.2.3 (The eye) of topic 5 of the AQA GCSE Biology specification. This resource contains an engaging and detailed PowerPoint (46 slides) and accompanying worksheets, some of which have been differentiated to help students of different abilities to take on the task. The lesson begins with a game of IMPOSSIBLE (shown in the picture) where students are challenged to pick out the names of the 7 structures of the eye which the specification states they have to be able to identify on a diagram. Students are given the functions of the cornea and the sclera to guide them at the start of the labelling task before they have to use their previous knowledge of the nervous system to write a function for the optic nerve. Literacy and numeracy skills are tested throughout the lesson and the next round of the quiz challenges them to use synonyms to recognise the key terms of adaptation and accommodation. Time is taken to focus on the process of accommodation so that students can see how the ciliary muscles and suspensory ligaments interact to change the shape of the lens and allow both near and distant objects to be seen clearly. This takes the lesson nicely into the next section where the conditions of myopia and hyperopia are considered. Again, the students are challenged on their recognition of Biology terminology to spot that these are the medical names for short and long-sightedness. Students are guided through the correction of myopia before being challenged to write a letter to the mother of a girl who suffers from hyperopia, explaining how the lens is used to correct the defect. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but can be used with younger students who are keen to learn about the eye or with A-level students who need to go back over the key points.
Inheritance of ABO blood groups (Edexcel GCSE Biology)
GJHeducationGJHeducation

Inheritance of ABO blood groups (Edexcel GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content in point 3.17 (Inheritance of ABO blood groups) as detailed in the Edexcel GCSE Biology specification. As specified in this point, students will learn how this inheritance demonstrates both codominance and multiple alleles. A potentially difficult topic, time has been taken to include guidance sections where students are walked through the interpretation of the different genotypes to find out the phenotypes as well as constructing genetic diagrams and calculating blood groups from pedigree trees. There is a real focus on genetic terminology such as allele, locus, genotype and phenotype so that the understanding is deep and students can use this if they choose to further their studies at A-level. This lesson has been designed for GCSE-aged students studying the Edexcel GCSE Biology course but is also suitable for older students who are learning about codominance and multiple alleles at A-level
Sex-linkage (CIE IGCSE Biology SUPPLEMENT)
GJHeducationGJHeducation

Sex-linkage (CIE IGCSE Biology SUPPLEMENT)

(0)
This fully-resourced lesson has been designed to cover the specification points about sex-linked characteristics as detailed in the supplement section of topic 17 (inheritance) of the CIE IGCSE Biology specification This resource consists of an engaging and detailed PowerPoint and an accompanying worksheet, which has been differentiated two ways so students who find the tasks difficult are given assistance to result in good outcomes. The lesson builds on the knowledge from earlier in the topic on monohybrid crosses and sex determination to show students how to draw genetic diagrams to calculate offspring outcomes when the gene is carried on the sex chromosomes. Step by step guides are used to demonstrate how to write the genotypes and gametes in these disorders by including the sex chromosomes to show gender. The lesson focuses on red-green colour blindness and haemophilia and builds up to questions on a pedigree tree to challenge the students to apply their new knowledge. This lesson has been designed for GCSE-aged students who are studying the CIE IGCSE Biology course but is suitable for A-level students who are looking at these types of genetic disorders.
Contraception (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Contraception (Edexcel GCSE Biology & Combined Science)

(0)
This engaging and detailed lesson has been written to cover the content of points 7.6 & 7.7 (The hormonal and barrier methods of contraception) as detailed in the Edexcel GCSE Biology & Combined Science specifications. This is a topic which can be difficult to teach due to the awkwardness of a class or students believing that they already know all of the information without really knowing the detail which is laid out in the specification. With this in mind, a wide range of activities have been included in the lesson to maintain motivation whilst ensuring that this important detail is covered. Students will learn about a range of hormonal methods including oral contraceptives and progesterone patches and how these methods influence the menstrual cycle. Barrier methods are also discussed and their effectiveness considered. Time is taken to look at alternative methods such as abstaining from sexual intercourse before and after ovulation and sterilisation. Due to the clear link to the topic of the menstrual cycle, previous knowledge checks are written into the lesson and challenge the students on their knowledge of FSH, LH, oestrogen and progesterone. There are also mathematical skills check so that students are prepared for the added mathematical element in this course. This lesson has been written for GCSE-aged students who are studying on the Edexcel GCSE Biology or Combined Science courses but is suitable for younger students who are looking at contraception in their Science lessons
Hormones in human reproduction (AQA GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Hormones in human reproduction (AQA GCSE Biology & Combined Science HT)

(0)
This lesson has been designed to cover the higher tier content of specification point 5.3.4 (Hormones in human reproduction) which is found in topic 5 of the AQA GCSE Biology & Combined Science specifications. A wide range of activities will engage and motivate the students whilst the content is covered in detail and understanding checks are included at regular points to enable the students to self-assess their new found knowledge. The following Biology is covered in this lesson: Reproductive hormones in the development of secondary sexual characteristics The role of testosterone as the main male reproductive hormone The role of oestrogen and progesterone in the repair and maintenance of the uterus lining The role of FSH and LH in the maturation of an egg and ovulation The interaction of these four hormones in the control of the menstrual cycle The final part of the lesson involves a number of questions where the students are challenged to apply their knowledge to unfamiliar situations This lesson has been designed for GCSE-aged students who are taking the AQA GCSE Biology or Combined Science course but it is also suitable for younger students who are looking into this topic as part of the reproduction module
Assisted Reproductive Technology (Edexcel GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Assisted Reproductive Technology (Edexcel GCSE Biology & Combined Science HT)

(0)
This resource has been designed to cover the higher tier content of specification point 7.8 as detailed in the Edexcel GCSE Biology & Combined Science specifications. The lesson takes the format of a day at a fertility clinic and students will see how three couples, who are at different stages of their currently unsuccessful journey to getting pregnant, are advised and the treatments that could be on offer to them. Discussion points are included throughout the lesson to encourage the students to talk about the Biology and to allow any misconceptions to be addressed if and when they arise. In addition, previous knowledge checks are regular so that the links between this topic and earlier ones such as the hormones in the menstrual cycle and contraception can be made. Students will be introduced to the abbreviation ART before learning how clomifene is used to treat infertility in women do not ovulate. Time is taken to explore alternative fertility drugs and students are challenged to explain why FSH and LH would be the reproductive hormones contained in these substances. The main focus of the lesson is IVF treatment and the main task culminates with students gaining a number of key points in the for and against argument before being challenged to continue this as a set homework in the form of an evaluation. Quiz competitions are used to introduce key terms in a fun and memorable way and the final task is a mathematical skills check where students will be able to compare the high number of multiple births that are associated with this treatment as compared to the number from natural births. This lesson has been designed for students studying the Edexcel GCSE Biology or Combined Science course but is also suitable for older students who are looking at this topic
Thyroxine and the control of metabolic rate (Edexcel GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Thyroxine and the control of metabolic rate (Edexcel GCSE Biology & Combined Science HT)

(0)
This resource contains a concise, engaging PowerPoint and accompanying worksheets which together cover the content of specification point 7.3 (Thyroxine and the control of metabolic rate as an example of negative feedback) as found on the Edexcel GCSE Biology & Combined Science higher tier specifications. Over the course of the lesson, students will learn about the effects of the release of thyroxine, how this release is regulated by the pituitary gland and hypothalamus and also will understand how this control is an example of negative feedback. Due to the obvious connection to the previously learned endocrine system topic, regular opportunities are taken to check on this prior knowledge and these work well with the understanding checks which allow the students to assess their progress. A quiz competition called FROM NUMBERS 2 LETTERS is used to introduce the key abbreviations in a fun and memorable way, whilst the key details of the content is always at the forefront of the design of the lesson. This lesson has been written for students studying the higher tier of the Edexcel GCSE Biology or Combined Science courses but it is also suitable for use with A-level students who need to recall the key details of these two hormones
The components of a REFLEX ARC (WJEC GCSE Biology)
GJHeducationGJHeducation

The components of a REFLEX ARC (WJEC GCSE Biology)

(0)
This lesson resource contains a engaging PowerPoint and accompanying worksheets, all of which have been designed to cover the content of specification point 2.5 (d) on the WJEC GCSE Biology specification. This specification point states that students should know the components of a reflex arc. This lesson builds on the knowledge from the previous lesson on the structure and function of the nervous system (2.5b). The lesson begins by challenging the students to come up with the word reflex having been presented with 5 other synonyms of the word automatic. This leads into a section of discovery and discussion where students are encouraged to consider how a reflex arc can be automatic and rapid despite the fact that the impulse is conducted into the CNS like any other reaction. Students will be introduced to the relay neurone and will learn how this provides a communication between the sensory neurone and the motor neurone and therefore means that these arcs do not involve processing by the brain. Moving forwards, the main task of the lesson challenges the students to write a detailed description of a reflex arc. Assistance is given on the critical section which involves the relay neurone in the spinal cord before they have to use their knowledge of nervous reactions to write a paragraph before and after to complete the description. As a final task, students will have to compare the structure and functions of sensory, motor and relay neurones. Although this lesson has been designed for students studying on WJEC GCSE Biology course, it is also suitable for older students who are studying reflex reactions at A-level and need to recall the main details.
The control of BLOOD GLUCOSE (WJEC GCSE Biology)
GJHeducationGJHeducation

The control of BLOOD GLUCOSE (WJEC GCSE Biology)

(0)
This concise lesson presentation and accompanying worksheet have been designed to cover the content of point 2.5 (h) of the WJEC GCSE Biology specification which states that students should understand the need to keep blood glucose levels within a constant range. Homeostasis is a running theme throughout the 2.5 topic so this lesson builds on knowledge from earlier topics to ensure that there is a deep understanding. The lesson begins by introducing glucose and a quiz competition will lead to the range 4 - 7, so that students can recognise that this is the set range within which this molecule’s concentration must be kept. Time is taken to look at some of the health problems that are associated with an increase in concentration above this upper limit and the general Biological knowledge of the students is tested with some questions. Moving forwards, the main task of the lesson involves a step by step guide through the stages in the response to a high blood glucose concentration and shows the students how the release of insulin leads to the uptake of glucose from the blood and a conversion to glycogen by the liver and muscle cells. The summary task at the end challenges the students to bring all of the information together to write a detailed description of this response and this activity is differentiated to aid those students who need extra assistance. This lesson has been designed for students studying the WJEC GCSE Biology course but could be used with A-level students who are beginning this topic and need to recall the key details.
Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Combined Science)

8 Resources
Each of the 8 lessons in this bundle have been written to include a wide range of activities that will engage and motivate the students whilst giving them regular oppotunities to assess their understanding of the current topic as well as checking on their knowledge of any previously linked topics. Each lesson has been written for students studying the Edexcel GCSE Combined Science course and the following specification points are covered by the lessons in this bundle: 7.1: Endocrine glands and the hormones they secrete 7.3: The control of metabolic rate by thyroxine as an example of negative feedback 7.4 & 7.5: The stages and the interactions of the hormones in the menstrual cycle 7.6 & 7.7: Barrier and hormonal contraception, the menstrual cycle and preventing pregnancy 7.8: The use of hormones in Assisted Reproductive Technology 7.9: The importance of homeostasis 7.13 & 7.14: The control of blood glucose concentration by the release of insulin and glucagon 7.15 & 7.16: The causes and control of diabetes type I and II Each lesson contains a detailed and engaging PowerPoint and accompanying worksheets, most of which are differentiated to enable students of different abilities to access the work.
The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)
GJHeducationGJHeducation

The structures and functions of sensory, relay and motor neurones (OCR A-level Biology A)

(0)
This is a fully-resourced lesson which covers the detail of point 5.1.3 (b) of the OCR A-level Biology A specification which states that students should be able to apply their understanding of the structures and functions of sensory, relay and motor neurones as well as the differences between myelinated and unmyelinated neurones. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath for the sensory and motor neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, links are made to the upcoming topic of the organisation of the nervous system (5.1.5) and students will be given additional knowledge such as the differences between somatic and autonomic motor neurones. This lesson has been designed for students studying on the OCR A-level Biology A course.
The pancreas and the release of insulin (OCR A-level Biology)
GJHeducationGJHeducation

The pancreas and the release of insulin (OCR A-level Biology)

(0)
This detailed and engaging lesson covers the detail of specification points 5.1.4 (c and d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the histology of the pancreas and the control of insulin secretion. There is a particular emphasis on structure throughout the lesson so that students can recognise the exocrine and endocrine tissues of the pancreas as well as describe their specific functions. The lesson begins with a list of endocrine glands and the students are challenged to select the gland which also has exocrine functions. This leads into a focus on the exocrine tissues of the pancreas, beginning with the enzymes that are secreted and form pancreatic juice. Students will discover how groups of these cells are called acini and the secretion of the enzymes into the lobule at the centre will lead to the intralobular ducts and finally the formation of the pancreatic duct. Moving forwards, students are introduced to the Islets of Langerhans and the specialised alpha and beta cells that are found within this endocrine tissue. The rest of this lesson looks at how the release of insulin from the beta cells is controlled. Some of the structures and substances involved have been met in earlier topics so a fun quiz round is used to see which students can recall these parts first. A series of questions and discussion points challenge the students to verbalise answers and to discuss key points so that the cascade of events that take place in the lead up to the release can be considered. In the final task, students have to describe these events in detail and this task has been differentiated so that students of differing abilities can access the work. This lesson has been specifically designed for students on the OCR A-level Biology A course and ties in well with the other lessons from module 5.1.4 on the control of blood glucose concentration and diabetes mellitus type I and II
CIE International A-level Biology TOPIC 3 REVISION (Enzymes)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 3 REVISION (Enzymes)

(0)
This engaging REVISION lesson has been designed to cover the content of topic 3 (Enzymes) of the CIE International A-level Biology specification. A wide range of activities have been written into the lesson to engage the students whilst they assess their understanding of the topic content. All of the exam questions contain detailed answers which students can use to identify missed marks and quiz competitions are used, like FROM NUMBERS 2 LETTERS (shown in the cover image) to recall key concepts and check on the finer details. The lesson has been planned to cover as much of the specification content as possible but the following sub-topics have received particular attention: Enzymes as globular proteins that act as biological catalysts Formation of the enzyme-substrate complex The lock and key theory and induced-fit hypothesis Competitive and non-competitive inhibitors The Michaelis-Menten constant The effect of changes in pH and temperature on the tertiary structure of the enzymes The immobilisation of enzymes using alginate Time has been taken in the design to ensure that links to other topics are made. For example, when checking the knowledge of the denaturation of enzymes due to pH and temperature, the bonds found in the tertiary structure are recalled and considered in depth.
CIE International A-level Biology TOPIC 13 REVISION (Photosynthesis)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 13 REVISION (Photosynthesis)

(0)
This engaging REVISION LESSON has been designed to cover the content of topic 13 (Photosynthesis) of the CIE International A-level Biology specification. Filled with a wide range of activities, that include exam questions with explanations, quick tasks and quiz competitions, the students will be motivated whilst they assess their ability to apply their knowledge. Due to the obvious importance of this reaction, assessment questions are extremely common and so a deep understanding of this topic is key to success and the lesson has been designed to cover the important ideas. The following sub-topics have received particular attention in this lesson: Photophosphorylation An outline of cyclic and non-cyclic photophosphorylation Photolysis of water The light dependent reaction The structure of the chloroplast and the site of the different reactions The Calvin cycle The limiting factors of photosynthesis Investigating the effect of light intensity using DCPIP as a redox indicator and a Hill suspension The effect of temperature on the rate There is a focus on terminology throughout the lesson so that students are comfortable with the terms that will be encountered in exam questions. Revision lessons on the other topics of the specification are uploaded so please take a moment to look at those too
CIE International A-level Biology TOPIC 4 REVISION (Cell membranes and transport)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 4 REVISION (Cell membranes and transport)

(0)
This detailed and engaging REVISION LESSON has been written to cover the content of topic 4 (Cell membranes and transport) of the CIE International A-level Biology specification. The lesson consists of a PowerPoint that contains exam questions, differentiated tasks and quiz competitions and is accompanied by worksheets with further activities. The competitions act to engage the students whilst they assess their understanding of the content and challenges their ability to apply this knowledge to potentially unfamiliar situations. The lesson was designed to cover as much of the specification content as possible but the following sub-topics have received particular attention: Active transport and its applications in animals and plants Facilitated diffusion and the use of channel and carrier proteins The factors that affect diffusion as demonstrated by gas exchange at the alveoli Exocytosis Water potential and the movement of water by osmosis The effect of solutions of different water potentials on animal and plant tissue The fluid mosaic model The plasma cell membrane and the function of its components As well as covering the current topic, the design of this lesson has been conscious to include future topics. For example, a cholinergic synapse was used to challenge the students to spot examples of facilitated diffusion, simple diffusion, active transport and exocytosis. Revision lessons for the other 18 topics are uploaded on TES or are in the process of being uploaded.
CIE International A-level Biology TOPIC 12 REVISION (Energy and respiration)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 12 REVISION (Energy and respiration)

(0)
This fully-resourced REVISION LESSON has been designed to provide the students with numerous opportunities to assess their understanding of the content of topic 12 (Energy and respiration) of the CIE International A-level Biology specification. The importance of this metabolic reaction is obvious and this is reflected in the volume of questions in the terminal exams which require an in depth knowledge of the stages of both aerobic and anaerobic respiration. The lesson contains a wide range of activities that cover the following points of the specification: Glycolysis as a stage of aerobic and anaerobic respiration The use and production of ATP through respiration Anaerobic respiration in mammalian muscle tissue The stages of aerobic respiration that occur in the mitochondrial matrix Oxidative phosphorylation The use of respirometers Calculating the respiratory quotient value for different substrates Revision lessons which cover the other topics of the specification are also uploaded and tie in well with this lesson.
Genetic terminology (AQA A-level Biology)
GJHeducationGJHeducation

Genetic terminology (AQA A-level Biology)

(0)
This lesson acts as an introduction to topic 7.1 of the AQA A-level Biology specification and focuses on 16 key genetic terms that will support students in forming a deep understanding of inheritance. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous