Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1119k+Views

1927k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The importance of coenzymes (OCR A-level Biology)
GJHeducationGJHeducation

The importance of coenzymes (OCR A-level Biology)

(0)
This clear and concise lesson explores the importance of coenzymes in cellular respiration as detailed in point 5.2.2 (f) of the OCR A-level Biology A specification. Students encountered coenzymes in module 2.1.4 as well as looking at the roles of NAD, CoA and FAD whilst learning about glycolysis, the link reaction and Krebs cycle earlier in this module. Therefore this lesson was designed to check on their understanding of the importance of these roles and goes on to explain how the transport of the protons and electrons to the mitochondrial cristae is key for the production of ATP. This lesson has been written to tie in with the other uploaded lessons in module 5.2.2 which include the mitochondria, glycolysis, the link reaction and the Krebs cycle
Stages of aerobic respiration and the mitochondrion (CIE International A-level Biology)
GJHeducationGJHeducation

Stages of aerobic respiration and the mitochondrion (CIE International A-level Biology)

(0)
This detailed lesson introduces the four stages of aerobic respiration and looks at the relationship between structure and function of the mitochondrion. The engaging PowerPoint and accompanying resource have been designed to cover points 12.2 (a) and (i) of the CIE International A-level Biology specification which states that students should be able to demonstrate and apply an understanding of the inner and outer mitochondrial membranes, cristae, matrix and mitochondrial DNA. The lesson begins with an introduction to glycolysis and students will learn how this first stage of aerobic respiration is also the first stage when oxygen isn’t present. A version of “GUESS WHO” challenges students to use a series of structural clues to whittle the 6 organelles down to just the mitochondrion so that they can learn how the other three stages take place inside this organelle. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the Link reaction and the Krebs cycle to run. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP.
Link reaction (CIE International A-level Biology)
GJHeducationGJHeducation

Link reaction (CIE International A-level Biology)

(0)
This clear and concise lesson looks at the role of the link reaction in the conversion of pyruvate to acetyl coenzyme A which will then enter the Krebs cycle. The PowerPoint has been designed to cover point 12.2 © of the CIE International A-level Biology specification which states that students should be able to explain that this conversion occurs in the matrix when oxygen is present The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.
Respiratory substrates and quotient (CIE International A-level Biology)
GJHeducationGJHeducation

Respiratory substrates and quotient (CIE International A-level Biology)

(0)
This fully-resourced lesson explores how glucose as well as the other respiratory substrates, such as lipids and proteins, can enter the respiratory pathway and therefore can be respired to produce molecules of ATP. The engaging PowerPoint and accompanying resources have been designed to cover points 12.1 (f) and (g) of the CIE International A-level Biology specification which states that students should be able to explain the relative energy values of carbohydrates, lipids and proteins and be able to determine respiratory quotients from equations. This lesson has been written to challenge current understanding as well as introduce details of glycolysis, the link reaction and Krebs cycle as these stages have yet to be covered fully. Students will learn that lipids and proteins can be used as respiratory substrates and will recognise the different ways that they enter the respiratory pathway. A quick quiz competition is used to introduce the relative energy value for carbohydrates and students are challenged to predict how the values for lipids and proteins will compare. As a result, students will recognise that a greater number of hydrogen atoms results in a greater availability of protons to form the proton gradient to fuel the production of ATP. The rest of the lesson focuses on the calculation of the respiratory quotient and time is taken to look at how the result can be interpreted to determine which substrates were respired.
Contraction of skeletal muscle (Edexcel A-level Biology)
GJHeducationGJHeducation

Contraction of skeletal muscle (Edexcel A-level Biology)

(0)
This fully-resourced lesson describes the process of skeletal muscle contraction in terms of the sliding filament theory. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 7.2 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and includes the role of actin, myosin, troponin, tropomyosin, calcium ions and ATP. The lesson begins with a study of the structure of the thick and thin filaments. Students will recognise that the protruding heads of the myosin molecule are mobile and this enables this protein to bind to the binding sites when they are exposed on actin. This leads into the introduction of troponin and tropomyosin and key details about the binding of calcium to this complex is explained. Moving forwards, students are encouraged to discuss possible reasons that can explain how the sarcomere narrows during contraction when the filaments remain the same length. This main part of the lesson goes through the main steps of the sliding filament model of muscle contraction and the critical roles of the calcium ions and ATP are discussed. The final task of the lesson challenges the students to apply their knowledge by describing the immediate effect on muscle contraction when one of the elements doesn’t function correctly. This lesson has been written to tie in with another uploaded lesson on the structure of a muscle fibre which is covered in specification point 7.10
Topic 7: Run for your life (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 7: Run for your life (Pearson Edexcel A-level Biology A)

17 Resources
This bundle contains 17 fully-resourced lessons which have been designed to cover the content as detailed in topic 7 (Run for your life) of the Pearson Edexcel A-Level Biology A (Salters Nuffield) specification. The specification points that are covered within these lessons include: The interaction of muscles, tendons, ligaments and the skeleton in movement The contraction of skeletal muscle by the sliding filament theory The overall reaction of aerobic respiration The enzymes involved in the multi-stepped process of respiration The roles of glycolysis in aerobic and anaerobic respiration The role of the link reaction and the Krebs cycle in the complete oxidation of glucose Understand how ATP is synthesised by oxidative phosphorylation The fate of lactate after a period of anaerobic respiration The myogenic nature of cardiac muscle The coordination of the heart beat The use of ECGs to aid diagnosis Calculating cardiac output The control of heart rate by the medulla oblongata The control of ventilation rate The structure of a muscle fibre The structural and physiological differences between fast and slow twitch muscle fibres The meaning of negative and positive feedback control The principle of negative feedback in maintaining systems within narrow limits The importance of homeostasis to maintain the body in a state of dynamic equilibrium during exercise DNA transcription factors, including hormones The lessons have been planned so that they contain a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within topic 7 and earlier topics If you would like to see the quality of the lessons, download the link reaction and Krebs cycle, the fate of lactate,the using ECGs and transcription factors lessons as these have been uploaded for free
The overall reaction of aerobic respiration (Edexcel A-level Biology)
GJHeducationGJHeducation

The overall reaction of aerobic respiration (Edexcel A-level Biology)

(0)
This detailed lesson looks at each of the stages of aerobic respiration and explains how this reaction is a multi-stepped process where each step is controlled by an enzyme. The engaging PowerPoint and accompanying resource have been designed to cover points 7.3 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with an introduction to glycolysis and students will learn how this first stage of aerobic respiration is also the first stage when oxygen is not present. This stage involves 10 reactions and an opportunity is taken to explain how each of these reactions is catalysed by a different, specific intracellular enzyme. A version of “GUESS WHO” challenges students to use a series of structural clues to whittle the 6 organelles down to just the mitochondrion so that they can learn how the other three stages take place inside this organelle. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the link reaction and the Krebs cycle to run and that these stages produce the waste product of carbon dioxide. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP and the atmospheric oxygen being reunited with hydrogen.
Arteries, veins & capillaries (Edexcel A-level Biology)
GJHeducationGJHeducation

Arteries, veins & capillaries (Edexcel A-level Biology)

(0)
This fully-resourced lesson explores how the structure of arteries, veins and capillaries relates to their functions. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 1.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. This lesson has been written to build on any prior knowledge from GCSE or earlier in this topic to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. The final part of the lesson looks at the role of the capillaries in exchange. Links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. It is estimated that it will take about 2 hours of allocated A-level Biology teaching time to cover the detail included in this lesson
The mammalian heart (OCR A-level Biology)
GJHeducationGJHeducation

The mammalian heart (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the internal and external structure of the mammalian heart and uses the human heart to represent this anatomy. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 3.1.2 (e) (i) of the OCR A-level Biology A specification As this topic was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 3.1.2 including those which have already been covered like circulatory systems as well as those which are upcoming such as the initiation of heart action. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time.
Cardiac cycle (AQA A-level Biology)
GJHeducationGJHeducation

Cardiac cycle (AQA A-level Biology)

(0)
This detailed lesson describes and explains the pressure and volume changes and associated valve movements that occur during the cardiac cycle to maintain the unidirectional flow of blood. The PowerPoint and accompanying resource have been designed to cover the 5th part of point 3.4.1 of the AQA A-level Biology specification. The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. This lesson has been written to tie in with the other uploaded lessons on the circulatory system as detailed in topic 3.4.1 (Mass transport in animals)
Topic 3.4.1: Mass transport in animals (AQA A-level Biology)
GJHeducationGJHeducation

Topic 3.4.1: Mass transport in animals (AQA A-level Biology)

7 Resources
Each of the 7 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 3.4.1 (Mass transport in animals) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: Haemoglobin and the role in the transport of oxygen The effects of carbon dioxide concentration on the dissociation of oxyhaemoglobin The general pattern of blood circulation in a mammal The gross structure of the human heart The calculation of cardiac output Pressure and volume changes and valve movements during the cardiac cycle The structure and function of arteries, arterioles and veins The formation of tissue fluid The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the blood vessels and the formation of tissue fluid lessons as these are free
Cardiac cycle (CIE International A-level Biology)
GJHeducationGJHeducation

Cardiac cycle (CIE International A-level Biology)

(0)
This detailed lesson describes and explains the blood pressure changes that occur during systole and diastole of the cardiac cycle. The PowerPoint and accompanying resource have been designed to cover point 8.2 © of the CIE International A-level Biology specification. The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. This lesson has been written to tie in with the other uploaded lessons on the heart as detailed in topic 8.2
Topic 8.2: The heart (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 8.2: The heart (CIE International A-level Biology)

3 Resources
Each of the 3 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 8.2 (The heart) of the CIE International A-Level Biology specification. The specification points that are covered within these lessons include: The external and internal structure of the mammalian heart The differences in the thickness of the walls of the chambers The cardiac cycle and the blood pressure changes during systole and diastole The initiation and control of heart action The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics
Topic 8: Transport in mammals (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 8: Transport in mammals (CIE International A-level Biology)

7 Resources
Each of the 7 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 8 (Transport in mammals) of the CIE International A-Level Biology specification. The specification points that are covered within these lessons include: The double, closed circulatory system of a mammal The relationship between the structure and function of arteries, veins and capillaries The role of haemoglobin in carrying oxygen and carbon dioxide The significance of the oxygen dissociation curve at different carbon dioxide concentrations (Bohr effect) The external and internal structure of the mammalian heart The cardiac cycle, including the blood pressure changes during systole and diastole The initiation and control of heart action The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the arteries, veins and capillaries lesson as this is free
The cardiac cycle and structure of the mammalian heart (Edexcel A-level Biology)
GJHeducationGJHeducation

The cardiac cycle and structure of the mammalian heart (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the cardiac cycle and relates the structure and operation of the mammalian heart to its function. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 1.4 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification As the structure of the heart was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 1 including those which have already been covered like circulatory systems as well as those which are upcoming such as the initiation of heart action. There is also an application question where students have to explain why a hole in the ventricular septum would need to be repaired if it doesn’t naturally close over time. The next part of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by cardiac diastole. Students are challenged to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. It is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover the detail included in this lesson as required by this specification point
Transport in mammals REVISION (Topic 8 CIE International A-level Biology)
GJHeducationGJHeducation

Transport in mammals REVISION (Topic 8 CIE International A-level Biology)

(0)
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 8 (Transport in mammals) of the CIE International A-level Biology specification. The engaging PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: The significance of the oxygen dissociation curves at different concentrations of carbon dioxide (The Bohr effect) The role of haemoglobin in carrying oxygen The role of haemoglobin in carrying carbon dioxide Draw the structures of red blood cells, neutrophils, monocytes and lymphocytes The relationship between the structure and function of a capillary The internal structure of the heart and its associated blood vessels Explain how heart action is initiated and controlled The pressure changes of the cardiac cycle The relationship between the structure and function of arteries and veins The double, closed circulatory system of a mammal Quiz rounds such as “Does this FLOW correctly” and “YOU DO THE MATH” are used to test the students on the finer details of their knowledge of the blood vessels and numerical facts
Maths in AQA A-level Biology REVISION
GJHeducationGJHeducation

Maths in AQA A-level Biology REVISION

(0)
The AQA specification states that a minimum of 10% of the marks across the 3 assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
Maths in AQA GCSE Combined Science REVISION
GJHeducationGJHeducation

Maths in AQA GCSE Combined Science REVISION

(0)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the AQA GCSE Combined Science papers. The mathematical element of the AQA GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
Structure of RNA (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of RNA (CIE International A-level Biology)

(0)
This lesson focuses on the structure of RNA and specifically the similarities and differences between this nucleic acid and DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover the second part of point 6.1 (b) of the CIE International A-level Biology specification which states that students should be able to describe the structure of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in previous lessons, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic. The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
Structure of DNA (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of DNA (CIE International A-level Biology)

(0)
This lesson looks at the detailed structure of DNA and builds on the knowledge from topic 1 to explain how this nucleic acid differs in the nucleus, mitochondria and chloroplasts of eukaryotic cells and in prokaryotic cells. Both the engaging PowerPoint and accompanying resources have been designed to cover the first part of point 6.1 (b) of the CIE International A-level Biology specification. As well as focusing on the differences between the DNA found in these two types of cells which includes the length, shape and association with histones, the various tasks will ensure that students are confident to describe how this double-stranded polynucleotide is held together by hydrogen and phosphodiester bonds. These tasks include exam-style questions which challenge the application of knowledge as well as a few quiz competitions to maintain engagement.