Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1119k+Views

1927k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Properties of water (AQA A-level Biology)
GJHeducationGJHeducation

Properties of water (AQA A-level Biology)

(0)
This fully-resourced lesson describes how the different properties of water make this biological molecule incredibly important in Biology. The engaging PowerPoint and accompanying worksheets have been designed to cover point 1.7 of the AQA A-level Biology specification. Hydrolysis reactions have been a recurring theme throughout topic 1, so the start of this lesson challenges the students to recognise the definition when only a single word is shown: water. Students will also recall the meaning of a condensation reaction. Moving forwards, the rest of the lesson focuses on the relationship between the structure and properties of water, beginning with its role as an important solvent. The lesson has been specifically written to make links to future topics and this is exemplified by the transport of water along the xylem in plants. A quick quiz round is used to introduce cohesion and tension so students can understand how the column of water is able to move along this vascular tissue without interruption. The next section focuses on the high latent heat of vaporisation and heat capacity of water and these properties are put into biological context using thermoregulation and the maintenance of a stable environment for aquatic animals. The lesson finishes with an explanation of the polar nature of water, a particularly important property that needs to be well understood for a number of upcoming topics, such as cell membranes.
Active transport, endocytosis & exocytosis (Edexcel A-level Biology A)
GJHeducationGJHeducation

Active transport, endocytosis & exocytosis (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the movement of molecules by active transport, endocytosis and exocytosis and explains the need for ATP. The PowerPoint and accompanying worksheets have been designed to cover the second part of point 2.4 of the Pearson Edexcel A-level Biology specification. The first part of 2.4, concerning simple and facilitated diffusion, was covered in the previous lesson. The start of the lesson challenges the students to use their prior knowledge of biological molecules to come up with the abbreviation ATP and they will learn that this is a phosphorylated nucleotide that contains adenine, ribose and three phosphate groups. Students may not have known this as the energy currency from GCSE so time is taken to explain that this molecule must be broken down to release energy and students are challenged to recall which type of reaction will be involved and to predict the products of such a reaction. This hydrolysis of ATP can be coupled to energy-requiring reactions within the cell and the rest of the lesson focuses on the use of this energy for active transport, endocytosis and exocytosis. Students are challenged to answer a series of questions which compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the enery source of ATP to move large substances in or out of the cell. The lesson concludes with a link to a future topic as the students are shown how exocytosis is involved in a synapse.
Nucleotides, DNA & RNA (Edexcel A-level Biology A)
GJHeducationGJHeducation

Nucleotides, DNA & RNA (Edexcel A-level Biology A)

(0)
This detailed and engaging lesson describes the basic structure of a mononucleotide and the similarities and differences between DNA and RNA. The PowerPoint and accompanying worksheet containing exam-style questions have been designed to cover points 2.5 (i) & (ii) of the Pearson Edexcel A-level Biology A specification. In topic 1, the students were introduced to a number of monomers and the start of the lesson challenges them to recognise the key term nucleotide when only the letters U, C and T are shown. The next part of the lesson describes the structure of a DNA nucleotide and an RNA nucleotide so that the pentose sugar and the bases adenine, cytosine and guanine can be recognised as similarities whilst deoxyribose and ribose and thymine and uracil are seen as the differences. Time is taken to discuss how a phosphodiester bond is formed between adjacent nucleotides and their prior knowledge and understanding of condensation reactions is tested through a series of questions. Students are then introduced to the purine and pyrimidine bases and this leads into the description of the double-helical structure of DNA and the hydrogen bonds between complementary bases. The final section of the lesson describes the structure of mRNA, tRNA and rRNA and students are challenged to explain why this single stranded polynucleotide is shorter than DNA In addition to the current understanding and prior knowledge checks, a number of quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the final round acts as a final check on the structures of DNA and RNA.
Translation (Edexcel A-level Biology A)
GJHeducationGJHeducation

Translation (Edexcel A-level Biology A)

(0)
This detailed lesson describes the process of translation and the roles of the mRNA, tRNA, rRNA and amino acids during this second stage of protein synthesis. Both the PowerPoint and accompanying resources have been designed to cover the second part of points 2.5 (i) & (ii) of the Pearson Edexcel A-level Biology A specification and contains constant links to the previous lessons in this topic on transcription and the structure of DNA and RNA. Translation is a topic which is often poorly understood and so this lesson has been written to support the students in answering the different types of questions by knowing and including the details of the key structures involved. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage that consists of this considerable detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up through the lesson, their confidence to answer this type should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have absorbed to answer some questions which involve the genetic code and the mRNA codon table
Topic 2: Genes and Health (Pearson Edexcel SNAB)
GJHeducationGJHeducation

Topic 2: Genes and Health (Pearson Edexcel SNAB)

19 Resources
Some of the key biological topics are covered in topic 2 of the Pearson Edexcel A-level Biology A (Salters Nuffield) course and include the transport of materials across cell membranes, DNA structure and replication, protein synthesis and monohybrid inheritance. In line with this, many hours of intricate planning have gone into the design of all of the 19 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked to immediately address misconceptions and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: The properties of gas exchange surfaces in living organisms Understand how the rate of diffusion is dependent on these properties and can be used in the calculation of the rate of diffusion by Fick’s law Adaptations of the mammalian lung for rapid gaseous exchange Structure and properties of cell membranes Simple and facilitated diffusion as methods of passive transport The involvement of ATP and carrier proteins in active transport, endocytosis and exocytosis The basic structure of mononucleotides The structures of DNA and RNA The process of protein synthesis The roles of the template strand, mRNA and tRNA The nature of the genetic code A gene is a sequence of bases on DNA that codes for the amino acid sequence of a polypeptide The basic structure of an amino acid The formation of polypeptides and proteins The primary, secondary, tertiary and quaternary structure of proteins Globular and fibrous proteins using haemoglobin and collagen as examples The mechanism of action and the specificity of enzymes Enzymes are biological catalysts that reduce activation energy The process of DNA replication Errors in DNA replication can give rise to mutations The meaning of key genetic terms Patterns of inheritance, in the context of monohybrid inheritance Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems Understand the uses and implications of genetic screening and prenatal testing Due to the detail included in each of these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content. If you would like to see the quality of the lessons, download the gas exchange surfaces, cell membranes, transcription, globular and fibrous proteins, monohybrid inheritance and cystic fibrosis lessons as these have been shared for free
Triglycerides (OCR A-level Biology)
GJHeducationGJHeducation

Triglycerides (OCR A-level Biology)

(0)
This fully-resourced lesson describes the relationship between the structure, properties and functions of triglycerides in living organisms. The engaging PowerPoint and accompanying worksheets have been designed to be the first lesson in a series of two that cover specification points 2.1.2 (h), (i) & (j) of the OCR A-level Biology A course and the lesson contains numerous references to relevant future topics such as the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in the sub-module so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Structure & function of GLOBULAR proteins (OCR A-level Biology)
GJHeducationGJHeducation

Structure & function of GLOBULAR proteins (OCR A-level Biology)

(0)
This fully-resourced lesson describes the relationship between the structure and function of globular proteins, specifically focusing on haemoglobin, insulin and pepsin. The detailed and engaging PowerPoint and accompanying resources have been primarily designed to cover specification point 2.1.2 (n) of the OCR A-level Biology A course but due to the detailed coverage of haemoglobin, the start of this lesson could also be used when teaching lessons that cover specification points 3.1.2 (i) and (j). By the end of the lesson, students will be able to describe that the interactions of the hydrophobic and hydrophilic R groups results in a spherical shape that is soluble in water and be able to explain the importance of this property with reference to the individual functions of these three globular proteins. They will also be able to name key individual details for each protein, such as haemoglobin being a conjugated protein, insulin being linked by numerous disulfide bridges and pepsin’s low number of basic R groups meaning it is stable in the acidic environment of the stomach. Extra time has gone into the planning of this lesson to ensure that links are continuously made to previous topics such as amino acids and the levels of protein structure as well as to upcoming topics like the control of blood glucose concentration that is covered in module 5.1.4.
Phospholipids & cholesterol (OCR A-level Biology)
GJHeducationGJHeducation

Phospholipids & cholesterol (OCR A-level Biology)

(0)
This engaging lesson describes the relationship between the structure, properties and functions of a phopholipid and cholesterol. The PowerPoint has been written as the second lesson in a series of two that cover specification points 2.1.2 (h), (i) & (j) of the OCR A-level Biology A course and there is a particular focus on their roles in membranes to link to module 2.1.5. In the previous lesson, the students met triglycerides and a quick quiz round called FAMILY AFFAIR is used at the start of the lesson to challenge the students on their knowledge of the structure of this macromolecule to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lesson in module 2.1.5 on the fluid mosaic model. Students are briefly introduced to facilitated diffusion and reminded of active transport so they can recognise that proteins will be found in the membrane to allow for movement of large or polar molecules. The remainder of the lesson focuses on cholesterol, beginning with the structure. The hydrophobic nature of this molecule is then considered and discussed so that they can understand its role in the regulation of membrane fluidity. That just leaves one final quiz round which identifies vitamin D, testosterone and oestrogen as three substances that are formed from cholesterol
Module 2.1.2: Biological molecules (OCR A-level Biology A)
GJHeducationGJHeducation

Module 2.1.2: Biological molecules (OCR A-level Biology A)

13 Resources
The biological molecules sub-module is incredibly important, not just because it is found near to the start of the course, but also because of its detailed content which must be well understood to promote success with most of the other OCR A-level Biology A modules. Many hours of intricate planning have gone into the design of all of the 13 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: The relationship between the properties of water and its roles for living organisms The concept of monomers and polymers and the importance of condensation and hydrolysis reactions The chemical elements that make up biological molecules The ring structure and properties of glucose and structure of ribose The synthesis and breakdown of a disaccharide and a polysaccharide The relationship between the structures, properties and functions of starch, glycogen and cellulose The structure of a triglyceride and a phospholipid as macromolecules The synthesis and breakdown of triglycerides The relationship between the properties and functions of triglycerides, phospholipids and cholesterol The general structure of an amino acid The synthesis and breakdown of dipeptides and polypeptides The levels of protein structure The structure and function of globular proteins The properties and functions of fibrous proteins The key inorganic ions that are involved in biological processes How to carry out and interpret the results of the chemical tests for proteins, reducing and non-reducing sugars, starch and lipids Due to the detail of each of these lessons, it is estimated that it will take in excess of 6 weeks of allocated teaching time to cover the content. If you would like to see the quality of the lessons, download the properties of water, glucose & ribose, amino acids and dipeptides and polypeptides lessons as these have been shared for free
Topic 2: Biological molecules (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 2: Biological molecules (CIE International A-level Biology)

11 Resources
The biological molecules topic is incredibly important, not just because it is found near to the start of the course, but also because of its detailed content which must be well understood to promote success with the other 18 CIE International A-level Biology topics. Many hours of intricate planning have gone into the design of all of the 11 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: Tests for reducing and non-reducing sugars The iodine test for starch The emulsion test for lipids The biuret test for proteins The ring forms of alpha and beta glucose The meaning of the terms monomer, polymer, macromolecule, monosaccharide, disaccharide and polysaccharide The formation of a glycosidic bond by a condensation reaction The breakage of glycosidic bonds by hydrolysis reactions The relationship between the molecular structure and functions of a triglyceride The relationship between the structure and functions of a phospholipid The structure of an amino acid and the formation and breakage of a peptide bond The meaning of the different protein structures and the types of bonding that hold these molecules in shape The molecular structure of haemoglobin and collagen as examples of globular and fibrous proteins The relationship between the properties and roles of water in living organisms The lesson on the biuret test for proteins and the emulsion test for lipids also contains a section which can be used for the revision of topics 2.2 and 2.3 Due to the detail of each of these lessons, it is estimated that it will take in excess of 4 weeks of allocated teaching time to cover the content. If you would like to see the quality of the lessons, download the alpha and beta glucose, phospholipids and haemoglobin and collagen lessons as these have been shared for free
Simple & facilitated diffusion (Edexcel A-level Biology A)
GJHeducationGJHeducation

Simple & facilitated diffusion (Edexcel A-level Biology A)

(0)
Simple and facilitated diffusion are forms of passive transport and this lesson describes the factors that increase the rate of this movement across membranes. This fully-resourced lesson is the first in a series of two that have been designed to cover specification point 2.4 of the Pearson Edexcel A-level Biology A and the involvement of channel and carrier proteins is also described and discussed. In a number of previous lessons that covered specification points 2.1 and 2.2, students were provided with the details of gas exchange surfaces and the structure and properties of cell membranes. This lesson continually refers back to the content of these lessons so that links can be made between the movement across a cell membrane with the concentration gradient, the parts of the membrane involved and any features that may increase the rate at which the molecules move. A series of questions about the alveoli is used to demonstrate how a large surface area, a short diffusion distance and the maintenance of a steep concentration gradient will increase the rate of simple diffusion. One of two quick quiz rounds is then used to introduce temperature and size of molecule as two further factors that can affect simple diffusion. The remainder of the lesson focuses on facilitated diffusion and describes how transmembrane proteins are needed to move small, polar or large molecules from a high concentration to a lower concentration across a partially permeable membrane. The other lesson included in this series to cover specification point 2.4 describes active transport, endocytosis and exocytosis.
Amplifying DNA using the PCR (Edexcel A-level Biology A)
GJHeducationGJHeducation

Amplifying DNA using the PCR (Edexcel A-level Biology A)

(0)
This lesson describes how the polymerase chain reaction (PCR) is used to amplify DNA. The concise PowerPoint has been primarily designed to cover the detail of specification point 6.4 of the Pearson Edexcel A-level Biology A specification but also makes continual links to the previous lesson on DNA profiling where the PCR is important as well as DNA structure. A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss with the aim of identifying the enzyme involved and to recall the action of this enzyme as covered in DNA replication in topic 2. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so another quiz is used to introduce these values. The main part of the lesson describes the main steps in the PCR and the reasons for each temperature is discussed and explained. Links are constantly made to related topics such as DNA structure are students are challenged on their understanding through exam-style questions. Time is taken to examine the key points in detail, such as the fact that the DNA polymerase used is taken from an extremophile so that it is not denatured at the high temperature.
Immunity (Edexcel A-level Biology A)
GJHeducationGJHeducation

Immunity (Edexcel A-level Biology A)

(0)
This fully-resourced lesson explains how individuals develop immunity and includes a focus on the different types (active, passive, natural, artificial). The engaging PowerPoint and accompanying resources have been designed to cover point 6.12 of the Pearson Edexcel A-level Biology A specification and there is also a description and discussion of herd immunity to increase the relevance to the current epidemic with COVID-19. The lesson begins with a series of exam-style questions which challenge the students to demonstrate and apply their understanding of the immune response as covered in the previous lessons on topics 6.8 & 6.9. In answering and assessing their answers to these questions, the students will recognise the differences between the primary and secondary immune responses and are then encouraged to discuss how the production of a larger concentration of antibodies in a quicker time is achieved. The importance of antibodies and the production of memory cells for the development of immunity is emphasised and this will be continually referenced as the lesson progresses. The students will learn that this response of the body to a pathogen that has entered the body through natural processes is natural active immunity. Moving forwards, time is taken to look at vaccinations as an example of artificial active immunity. Another series of questions focusing on the MMR vaccine will challenge the students to explain how the deliberate exposure to antigenic material activates the immune response and leads to the retention of memory cells. A quick quiz competition is used to introduce the variety of forms that the antigenic material can take along with examples of diseases that are vaccinated against using these methods. The eradication of smallpox is used to describe the concept of herd immunity and the students are given time to consider the scientific questions and concerns that arise when the use of this pathway is a possible option for a government. The remainder of the lesson looks at the different forms of passive immunity and describes the drawbacks in terms of the need for a full response if a pathogen is reencoutered.
Phenotype (Edexcel A-level Biology A)
GJHeducationGJHeducation

Phenotype (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how phenotype is the result of an interaction between genotype and the environment and can be affected by multiple alleles at many gene loci. The engaging PowerPoint and accompanying resources have been primarily designed to cover points 3.14 (i) & 3.15 of the Pearson Edexcel A-level Biology A specification but also includes activities to challenge the students on previous concepts in topics 3 and 2. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation within a species is due to both genetic and environmental factors. The main part of the the lesson focuses on these genetic factors, and describes how mutation and the events of meiosis contribute to this variation. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations, deletions, insertions, the genetic code, crossing over and independent assortment. Moving forwards, the concept of multiple alleles is introduced and students will learn how the presence of more than 2 alleles at a locus increases the number of phenotypic variants. Another quick quiz round is used to introduce polygenic inheritance and the link is made between this inheritance of genes at a number of loci as an example of continuous variation. The final part of the lesson describes a few examples where environmental factors affect phenotype, such as chlorosis in plants. As this is the final lesson in topic 3, the numerous activities can be used for revision purposes and to show the links between different biological topics.
Structure of prokaryotic cells (AQA A-level Biology)
GJHeducationGJHeducation

Structure of prokaryotic cells (AQA A-level Biology)

(0)
This detailed lesson describes how the structure of a prokaryotic cell differs from the structure of an eukaryotic cell. The engaging PowerPoint and accompanying resources have been designed to cover the first part of point 2.1.2 of the AQA A-level Biology specification and describes how the size and cell structures differ and also covers the additional features that are found in some prokaryotic cells. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to add an additional prefix to their prefix and suffix table which they believe will translate as before or in front of. This leads into the discovery of the meaning of prokaryote as before nucleus and this acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce.
Fluid mosaic membrane (CIE International A-level Biology)
GJHeducationGJHeducation

Fluid mosaic membrane (CIE International A-level Biology)

(0)
This detailed lesson describes the fluid mosaic model of membrane structure and outlines the roles of the different components . Fully resourced, the PowerPoint and accompanying worksheets have been designed to cover specification point 4.1 (a) of the CIE International A-level Biology specification but as the membranes and target cells are discussed, points 4.1 (b) and © are also partially covered The fluid mosaic model is introduced at the start of the lesson so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in topic 2 and so an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
The significance of water (Edexcel A-level Biology B)
GJHeducationGJHeducation

The significance of water (Edexcel A-level Biology B)

(0)
This detailed lesson describes the importance of the dipole nature of water and its numerous properties to living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point 1.7 of the Edexcel A-level Biology B course and the intricate planning ensures that each role is illustrated using a specific example. As the final lesson in the biological molecules topic, not only does this lesson cover the important content related to water but also acts as a revision tool as it checks on key topic 1 content such as condensation and hydrolysis reactions. A wide range of tasks are used to check on current understanding and prior knowledge and quick quiz competitions introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: high specific heat capacity polar solvent surface tension incompressibility maximum density at 4 degrees Celsius
Topic 1.4: DNA and protein synthesis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 1.4: DNA and protein synthesis (Edexcel A-level Biology B)

6 Resources
This bundle of 6 fully-resourced lessons have been designed to cover the content as detailed in topic 1.4 of the Edexcel A-level Biology B specification. The specification points in this DNA and protein synthesis topic which are covered by the lessons are as follows: The structure of DNA The semi-conservative replication of DNA A gene is a sequence of bases on DNA that codes for an amino acid sequence The structure of mRNA The structure of tRNA The process of transcription The process of translation Base deletions, insertions and substitutions as gene mutations The effect of point mutations on amino acid sequences The engaging PowerPoint lessons and accompanying resources contain a wide range of activities and tasks that include exam-style questions with displayed mark schemes, quick quiz competitions, useful hints and discussion periods. If you would like to see the quality of the lessons then download the structure of DNA and transcription lessons as these have been uploaded for free.
Formation of polypeptides & protein structures (Edexcel A-level Biology B)
GJHeducationGJHeducation

Formation of polypeptides & protein structures (Edexcel A-level Biology B)

(0)
This lesson describes the formation of dipeptides & polypeptides and the different levels of protein structure. Both the engaging PowerPoint and accompanying resources have been designed to cover specification points 1.3 (ii), (iii) & (iv) of the Edexcel A-level Biology B specification and also makes continual links to previous lessons such as amino acids as well as to upcoming lessons like antibodies and enzymes so students can understand where proteins are involved. The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur. The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. Students will see the differences between globular and fibrous protein and again biological examples are used to increase relevance. The lesson concludes with one final quiz round called STRUC by NUMBERS where the students have to use their understanding of the protein structures to calculate a numerical answer.
Topic 1: Biological molecules (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 1: Biological molecules (Edexcel A-level Biology B)

18 Resources
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 9 Edexcel A-level Biology B topics. Many hours of intricate planning has gone into the design of all of the 18 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: The differences between monosaccharides, disaccharides and polysaccharides The structure of glucose and ribose The formation of disaccharides and polysaccharides from monosaccharides The structure of starch, glycogen and cellulose The synthesis of a triglyceride The differences between saturated and unsaturated lipids The relationship between the structure of lipids and their roles The structure and properties of phospholipids The structure of an amino acid The formation of polypeptides and proteins The role of ionic, hydrogen and disulphide bonding in proteins The levels of protein structure The structure of collagen and haemoglobin The structure of DNA The semi-conservative replication of DNA A gene is a sequence of bases on DNA that codes for an amino acid sequence The structure of mRNA The structure of tRNA The process of transcription The process of translation Base deletions, insertions and substitutions as gene mutations The effect of point mutations on amino acid sequences The structure of enzymes as globular proteins The concept of specificity and the induced-fit hypothesis Enzymes are catalysts that reduce activation energy Understand how temperature affects enzyme activity Enzymes catalyse a wide range of intracellular reactions as well as extracellular ones The importance of water for living organisms Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete. If you would like to see the quality of the lessons then download the monosaccharides, disaccharides and polysaccharides, glucose and ribose, triglycerides, structure of DNA and transcription lessons as these have been uploaded for free.