Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Glycolysis (AQA A-level Biology)
GJHeducationGJHeducation

Glycolysis (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the details of glycolysis as the first stage of aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover the second part of point 5.2 of the AQA A-level Biology specification which states that students should know glycolysis as the phosphorylation of glucose and the production and subsequent oxidation of triose phosphate. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on anaerobic respiration and the different stages of aerobic respiration (the Link reaction, Krebs cycle and oxidative phosphorylation)
Oxidative phosphorylation (Edexcel A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (Edexcel A-level Biology)

(1)
This detailed, concise lesson describes and explains how the electron transport chain and chemiosmosis are involved in the synthesis of ATP by oxidative phosphorylation. The PowerPoint has been designed to cover point 7.6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also looks at the role of the enzyme, ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 steps and at each point, key facts are discussed and explored in detail to enable a deep understanding to be developed. Students will see how the proton gradient is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP. Understanding checks are included throughout the lesson to enable the students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration.
Link reaction & Krebs cycle (Edexcel A-level Biology)
GJHeducationGJHeducation

Link reaction & Krebs cycle (Edexcel A-level Biology)

(1)
This engaging and detailed lesson looks at the roles of the Link reaction and the Krebs cycle as the stages of aerobic respiration which occur in the mitochondrial matrix. Both the PowerPoint and the accompanying resource have been designed to cover point 7.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that these two stages occur in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. The rest of the lesson focuses on the Krebs cycle. In line with the detail of the specification, students will understand how decarboxylation and dehydrogenation reactions result in the regeneration of the 4C compound. It is estimated that it will take about 2 hours of A-level teaching time to cover the detail of the lesson and therefore the detail of the specification point 7.5
Glycolysis (Edexcel A-level Biology)
GJHeducationGJHeducation

Glycolysis (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the roles of glycolysis in aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 7.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on the Link reaction, Krebs cycle, oxidative phosphorylation and the production of lactate.
Organisation of the mammalian nervous system (OCR A-level Biology)
GJHeducationGJHeducation

Organisation of the mammalian nervous system (OCR A-level Biology)

(1)
This detailed lesson looks at the structural organisation of the mammalian nervous system into the CNS and the PNS as detailed in point 5.1.5 (g) of the OCR A-level Biology A specification. Students will see how the PNS is divided into the sensory and motor systems and then further divided into the somatic and autonomic nervous systems. Prior knowledge checks are included throughout the lesson to make links to earlier topics such as the structure of neurones and the function of the hypothalamus in thermoregulation and osmoregulation. This lesson has been designed to tie in with the uploaded lesson on the autonomic nervous system which is also covered in specification point 5.1.5 (g)
Calculating CARDIAC OUTPUT (Edexcel A-level Biology)
GJHeducationGJHeducation

Calculating CARDIAC OUTPUT (Edexcel A-level Biology)

(0)
This clear and concise lesson looks at the calculation of cardiac output as the product of stroke volume and heart rate. This engaging PowerPoint and accompanying resource have both been designed to cover point 7.9 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to calculate cardiac output. The lesson begins by challenging the students to recall that the left ventricle is the heart chamber with the thickest myocardial wall. This leads into the introduction of stroke volume as the volume of blood which is pumped out of the left ventricle each heart beat. A quick quiz game is used to introduce a normative value for the stroke volume and students are encouraged to discuss whether males or females would have higher values and to explain why. A second edition of this quiz reveals a normative value for resting heart rate and this results into the introduction of the equation to calculate cardiac output. A series of questions are used to challenge their ability to apply this equation and percentage change is involved as well. The final part of the lesson looks at the hypertrophy of cardiac muscle and students will look at how this increase in the size of cardiac muscle affects the three factors and will be challenged to explain why with reference to the cardiac cycle that was covered in an earlier topic.
Autonomic Nervous System (OCR A-level Biology)
GJHeducationGJHeducation

Autonomic Nervous System (OCR A-level Biology)

(0)
This detailed lesson looks at the structure and function of the motor neurones that form the autonomic nervous system and is responsible for automatic responses. The engaging PowerPoint and accompanying resource have both been designed to cover the second part of point 5.1.5 (g) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the functional organisation of the motor system into somatic and autonomic systems. Students will discover that this system is further divided into sympathetic and parasympathetic systems to control different aspects of a particular involuntary response. The lesson begins with a focus on the types of effectors that will be connected to the CNS by autonomic motor neurones. Students will learn that effectors which are not under voluntary control such as cardiac muscle, smooth muscle and glands will be innervated by these neurones. Moving forwards, a quick quiz competition is used to introduced ganglia as a structure which connects the two or more neurones involved in the cell signalling between the CNS and the effector. This leads into the discovery of the two divisions and students will begin to recognise the differences between the sympathetic and parasympathetic systems based on function but also structure. The remainder of the lesson looks at the differing effects of these two systems. This lesson has been written to tie in with the lesson on the organisation of the mammalian nervous system which covers the first part of specification point 5.1.5 (g)
Structure of a muscle fibre (Edexcel A-level Biology)
GJHeducationGJHeducation

Structure of a muscle fibre (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the detailed structure of a muscle fibre, and focuses on the proteins, bands and zones that are found in the myofibril. The engaging PowerPoint and acccompanying resource have been designed to cover point 7.10 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with an imaginary question from the quiz show POINTLESS, where students have to recognise a range of fields of study. This will reveal myology as the study of muscles so that key terms like myofibril, myofilament and myosin can be introduced. Students should have met these terms as well as actin when learning about the sliding filament theory in topic 7.2, so this acts as a recall. Moving forwards, students will be shown the striated appearance of this muscle so they can recognise that some areas appear dark where both myofilaments are found and others as light as they only contain actin or myosin. A quiz competition is used to introduce the A band, I band and H zone and students then have to use the information given to label a diagram of the myofibril. The final task challenges the students to use their knowledge of the sliding filament theory to recognise which of these bands or zones narrow or stay the same length when muscle is contracted.
Control of heart rate (Edexcel A-level Biology)
GJHeducationGJHeducation

Control of heart rate (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at how heart rate is controlled by the cardiovascular control centre in the medulla oblongata. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the first part of point 7.9 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also ties in well with previously covered topics and provides a good introduction to control systems which are covered later in topic 7 and 8. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
Using ECGs (Edexcel A-level Biology)
GJHeducationGJHeducation

Using ECGs (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the use of electrocardiograms to aid the diagnosis of CVD and other heart conditions. The engaging PowerPoint and accompanying resources have been designed to cover point 7.8 (iii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also make continual links to earlier specification points like 1.4 and 1.5 where heart topics were previously covered. The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem. This lesson has been designed to tie in with the lesson that covers the previous specification point on the normal electrical activity of the heart and the myogenic nature of cardiac muscle
Coordination of the heart beat (Edexcel A-level Biology)
GJHeducationGJHeducation

Coordination of the heart beat (Edexcel A-level Biology)

(0)
This engaging lesson looks at the myogenic nature of cardiac muscle and explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the normal electrical activity of the heart. The PowerPoint and accompanying resources have been designed to cover the points 7.8 (i & ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 1. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology Due to the detailed nature of this lesson, it is estimated that it will take about 2 hours of A-level teaching time to cover the two specification points
Control of heart rate (AQA A-level Biology)
GJHeducationGJHeducation

Control of heart rate (AQA A-level Biology)

(1)
This fully-resourced lesson looks at the coordination and control of heart rate by the cardiovascular centre in the medulla oblongata. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the second part of point 6.1.3 of the AQA A-level Biology specification which states that students should know the roles and locations of the sensory receptors and the roles of the autonomic nervous system and effectors in the control of heart rate. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work This lesson has been written to tie in with the previous lesson on the conducting system of the heart which is also detailed in specification point 6.1.3
Conducting tissue of the heart (AQA A-level Biology)
GJHeducationGJHeducation

Conducting tissue of the heart (AQA A-level Biology)

(0)
This engaging lesson explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the transmission of the wave of excitation through the heart. The PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.3 of the AQA A-level Biology specification which states that students should be able to describe the myogenic stimulation of the heart and the subsequent wave of electrical activity. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 3. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
Mutations (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Mutations (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at how errors in DNA replication can give rise to gene mutations and then links to an earlier topic by exploring how these base changes can affect the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 2.12 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and constantly refers back to points 2.7, 2.8 and 2.9 which detail the genetic code, genes and the structure of proteins. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was taught in 2.6. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a quick quiz competition is used to introduce the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met in the previous lesson. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution.
Isolation and speciation (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Isolation and speciation (Pearson Edexcel A-level Biology A)

(1)
This fully-resourced lesson explores how reproductive isolation can potentially lead to the formation of a new species by speciation . The engaging PowerPoint and accompanying resources have been designed to cover point 5.19 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should understand how isolation reduces gene flow between populations which can lead to allopatric or sympatric speciation. The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.
Hardy-Weinberg equation (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg equation (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equation to see whether a change in allele frequency is occurring in a population over time. The detailed PowerPoint and differentiated practice questions worksheets have been designed to cover point 4.5 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which expects students to be able to use this mathematical equation The lesson begins by looking at the equation and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged
Synapses (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Synapses (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson has been designed to cover point 8.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification that states that students should know the structures and function of synapses in nerve impulse transmission. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters are considered to provide the students with a wider view of this topic and to make links to specification point 8.15 The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The final part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics.
Nerve impulses (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Nerve impulses (Pearson Edexcel A-level Biology)

(0)
This highly detailed and engaging lesson which explains how a nerve impulse (action potential) is conducted along an axon). The PowerPoint and accompanying resources have been designed to cover point 8.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to describe how the changes in the membrane permeability to sodium and potassium ions results in conduction. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes and saltatory conduction. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells.
Sensory, relay and motor neurones (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Sensory, relay and motor neurones (Pearson Edexcel A-level Biology)

(1)
This fully-resourced lesson looks at the structures of the sensory, relay and motor neurones and explains how the presence of a myelin sheath increases the speed of conduction of an impulse. The engaging PowerPoint and accompanying resources have been designed to cover point 8.1 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to apply their understanding of the structures and functions of sensory, relay and motor neurones as well as the differences between myelinated and unmyelinated neurones. This lesson also covers 8.2 (i) as the students will be able to see how conduction along a motor neurone stimulates effectors to respond to a stimulus. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath for the sensory and motor neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, links are made to related topics such the organisation of the nervous system and students will be given additional knowledge such as the differences between somatic and autonomic motor neurones.
Sex-linkage (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Sex-linkage (Pearson Edexcel A-level Biology)

(0)
This is a fully-resourced lesson which looks at the inheritance of genes that are carried on the sex chromosomes in sex-linkage. Students will explore sex-linked diseases in humans and then are challenged to apply their knowledge to examples in other animals. The detailed PowerPoint and associated resources have been designed to cover the second part of point 3.8 (ii) of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should understand sex-linkage. Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to apply their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender.