Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1110k+Views

1918k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Cholinergic synapses and neuromuscular junctions (AQA A-level Biology)
GJHeducationGJHeducation

Cholinergic synapses and neuromuscular junctions (AQA A-level Biology)

(0)
This fully-resourced lesson covers the content of the first part of specification point 6.2.2 of the AQA A-level Biology specification that states that students should be able to describe the detailed structure of a cholinergic synapse and a neuromuscular junction and be able to compare the transmission across both of these structures. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters and drugs are considered so students are prepared to describe the differing effects on the synapse. The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The next part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. The final part of the lesson focuses on the NMJ and challenges the students to use the knowledge gained from earlier in the lesson to develop their understanding of these junctions. Time is taken to look at the structure of the sarcolemma to enable students to understand how the binding of the acetylcholine leads to the wave of depolarisation passing to the transverse tubules. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics. This lesson has been designed for students studying the AQA A-level Biology course but could be used with very able GCSE students who are keen to develop their understanding of synapses over and above the small detail that is provided at that level. This lesson also ties in nicely with the other uploaded lessons from topic 6
ULTRAFILTRATION (OCR A-level Biology A)
GJHeducationGJHeducation

ULTRAFILTRATION (OCR A-level Biology A)

(0)
This detailed lesson has been written to cover the part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the process of ultrafiltration. The aim of the design was to give the students the opportunity to discover this particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other 5.1.2 kidney lessons on the structure of the nephron, selective reabsorption, osmoregulation and kidney failure
The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)
GJHeducationGJHeducation

The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)

(0)
This is a highly-detailed and fully-resourced lesson which covers the detail of specification point 5.1.2 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the roles of the hypothalamus, posterior pituitary, ADH and the collecting duct in the control of the water potential of the blood. Students learnt about the principles of homeostasis and negative feedback in an earlier module, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other uploaded lessons in module 5.1.2 which include the structure of the nephron, ultrafiltration and selective reabsorption.
The transmission of an action potential (CIE International A-level Biology)
GJHeducationGJHeducation

The transmission of an action potential (CIE International A-level Biology)

(0)
This is a highly detailed and engaging lesson that covers the detail of specification point 15.1 (e) of the CIE International A-level Biology specification which states that students should be able to describe and explain the transmission of an action potential in a myelinated neurone. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells. This lesson has been designed for students studying the CIE International A-level Biology course and ties in nicely with other uploaded lessons which cover the content of topic 15.1 (Control and coordination in mammals)
Homeostasis and negative feedback (CIE International A-level Biology)
GJHeducationGJHeducation

Homeostasis and negative feedback (CIE International A-level Biology)

(0)
This is a detailed and engaging lesson which has been designed to cover specification points 14.1 (a, b and c) of the CIE International A-level Biology specification which states that students should be able to explain the importance of homeostasis and the roles of negative feedback and the communication systems in this control. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within strict limits and the importance of these systems are looked into in detail. They will also learn that carbon dioxide concentration and blood pressure are aspects that are controlled in the body and key terminology such as chemoreceptors and baroreceptors are used throughout so that students are confident with the meaning when met later in the module. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring it back to the optimum and the differences to positive feedback are also explored. This lesson has been written for students who are studying the CIE International A-level Biology course and ties in well with the other uploaded lessons on this topic such as those on the kidney
The structure of the KIDNEY (CIE International A-level Biology A)
GJHeducationGJHeducation

The structure of the KIDNEY (CIE International A-level Biology A)

(0)
This detailed lesson has been planned to cover the content of specification point 14.1 (e) of the CIE International A-level Biology specification which states that students should be able to describe the gross structure of the kidney and the detailed structure of the nephron. The lesson was designed at the same time as the other lessons in this topic on ultrafiltration, selective reabsorption and osmoregulation so that a common theme runs throughout and students can build their knowledge up gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. This lesson has been designed for students studying on the CIE International A-level Biology course
Control of blood glucose concentration (AQA A-level Biology)
GJHeducationGJHeducation

Control of blood glucose concentration (AQA A-level Biology)

(0)
This fully-resourced lesson is highly detailed and in combination with the uploaded lesson on the causes of diabetes type I and II, it covers all of specification point 6.4.2 of the AQA A-level Biology specification which states that students should be able to describe the homeostatic control of blood glucose concentration using negative feedback mechanisms that release insulin or glucagon. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the AQA A-level Biology course and ties in with the already mentioned lesson on diabetes but also with the other uploaded lessons on topic 6 such as nerve impulses and kidney function
Ultrafiltration (CIE International A-level Biology)
GJHeducationGJHeducation

Ultrafiltration (CIE International A-level Biology)

(0)
This detailed lesson has been written to cover the 1st part of specification point 14.1 (f) of the CIE International A-level Biology specification which states that students should be able to describe how the process of ultrafiltration is involved with the formation of urine. The aim of the design was to give the students the opportunity to discover this particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the CIE International A-level Biology course and ties in closely with the other kidney lessons on the structure of the nephron, selective reabsorption and osmoregulation
Topic 15.1:  Control and coordination in mammals (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 15.1: Control and coordination in mammals (CIE International A-level Biology)

7 Resources
This bundle contains 7 fully-resourced and detailed lessons that have been designed to cover the content of topic 15.1 of the CIE International A-level Biology specification which concerns the control and coordination in mammals. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and previous knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Most of the tasks are differentiated to allow differing abilities to access the work and be challenged. The following sub-topics are covered in this bundle of lessons: The structure of sensory neurones and motor neurones The transmission of an action potential along a myelinated neurone The importance of the myelin sheath The structure of a cholinergic synapse The roles of the synapse The roles of the NMJ, transverse tubules and sarcoplasmic reticulum in the stimulation of striated muscle The ultrastructure of striated muscle The sliding filament model of muscular contraction If you want to see the quality of the lessons before purchasing then the lesson on the structure and role of the cholinergic synapse is a free resource to download
The structure of the nephron (AQA A-level Biology)
GJHeducationGJHeducation

The structure of the nephron (AQA A-level Biology)

(0)
This detailed lesson has been planned to cover the 1st part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe the detailed structure of the nephron and understand its role in ultrafiltration, selective reabsorption and osmoregulation. The lesson was designed at the same time as the other lessons in this topic on ultrafiltration, selective reabsorption and osmoregulation so that a common theme runs throughout and students can build up their knowledge gradually in order to develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. This lesson has been designed for students studying on the AQA A-level Biology course
Blood glucose concentration (CIE International A-level Biology)
GJHeducationGJHeducation

Blood glucose concentration (CIE International A-level Biology)

(0)
This fully-resourced lesson is highly detailed and covers all of specification points 14.1 (h, i and j) of the CIE International A-level Biology specification which states that students should be able to describe how blood glucose concentration is regulated using negative feedback mechanisms that release insulin or glucagon and outline the role of cyclic AMP. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The final part of the lesson looks at the role of the secondary messenger, cyclic AMP, and describes how this is involved when glucagon and adrenaline attach to receptors on the liver. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the CIE International A-level Biology course and ties in with the other uploaded lessons which cover the content of topic 14.1 (Homeostasis in mammals)
The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)
GJHeducationGJHeducation

The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)

(0)
This engaging and fully-resourced lesson covers the content of specification points 5.1.4 (e and f) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the differences between diabetes mellitus type I and II and the potential treatments of this disease. The lesson has been designed to take place in a diabetes clinic where students will be challenged to perform a number of roles such as diagnosing a patient with either type I or II and to write a letter to this patient explaining how the disease was caused and any treatments that will be recommended to control the disease. It has been planned to build on the knowledge that they will have of these diseases from GCSE and links are made to other A-level topics such as the beta cells of the pancreas which they considered during the lesson on the control of blood glucose concentration. The final part of the lesson looks at the potential treatments which include the genetic modification of bacteria. This topic is covered in greater detail in module 6.1.3 so this section of the lesson focuses on the enzymes involved as well as the plasmid DNA from a bacterial cell. This lesson has been designed for students studying the OCR A-level Biology A course and runs alongside the uploaded lesson on the control of blood glucose concentration as well as the other lessons that have been added for module 5.1.4
Gene interactions (CIE International A-level Biology)
GJHeducationGJHeducation

Gene interactions (CIE International A-level Biology)

(0)
This fully-resourced lesson explores how the presence of particular alleles at one locus can mask the expression of alleles at a second locus in gene interactions. The detailed and engaging PowerPoint and associated resources have been designed to cover the part of point 16.2 (b) of the CIE International A-level Biology specification which states that students should be able to use genetic diagrams to solve problems that involve gene interactions. This is a topic which students tend to find difficult, and therefore the lesson was written to split the topic into small chunks where examples of dominant, recessive and complimentary gene interactions are considered, discussed at length and then explained. Understanding checks, in various forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. There are regular links to related topics such as dihybrid inheritance so that students can meet the challenge of interpreting genotypes and link to the different types of interactions
Genetic diagrams and phenotypic ratios (OCR A-level Biology A module 6.1.2 [b])
GJHeducationGJHeducation

Genetic diagrams and phenotypic ratios (OCR A-level Biology A module 6.1.2 [b])

6 Resources
Each of the 6 lessons within this bundle are fully-resourced and cover the content of point (b) of module 6.1.2 of the OCR A-level Biology A specification which states that students should be able to use genetic diagrams and phenotypic ratios to show patterns of inheritance and explain linkage and epistasis. Students are guided through the construction of the genetic diagrams for the inheritance of one or two genes and are shown how to analyse the phenotypic ratio to determine whether linkage has occurred or whether a gene interaction is involved. The wide range of activities which includes exam questions with visual mark schemes, differentiated tasks and quiz competitions will maintain engagement whilst providing the students with opportunities to assess their progress against the current topic.
Topic 16.2 [b]: The roles of genes in determining the phenotype  (CIE A-level Biology)
GJHeducationGJHeducation

Topic 16.2 [b]: The roles of genes in determining the phenotype (CIE A-level Biology)

5 Resources
Each of the 5 lessons within this bundle are fully-resourced and cover the content of point (b) of topic 16.2 of the CIE A-level Biology specification which states that students should be able to use genetic diagrams to solve problems which involve the following: monohybrid and dihybrid crosses autosomal linkage sex-linkage codominance multiple alleles gene interactions Students are guided through the construction of the genetic diagrams for the inheritance of one or two genes and are shown how to analyse the phenotypic ratios to determine whether linkage has occurred or whether a gene interaction is involved. The wide range of activities which includes exam questions with visual mark schemes, differentiated tasks and quiz competitions will maintain engagement whilst providing the students with opportunities to assess their progress against the current topic
Structure of mRNA & tRNA (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of mRNA & tRNA (Edexcel A-level Biology B)

(0)
This lesson describes the structure of messenger and transfer RNA and compares this against the structure of DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover points 1.4 (iv) and (v) as detailed in the Edexcel A-level Biology B specification which states that students should be able to describe the structure of the two forms of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in the first lesson of topic 1.4, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic. The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
Synthesis & breakdown of disaccharides (Edexcel A-level Biology B)
GJHeducationGJHeducation

Synthesis & breakdown of disaccharides (Edexcel A-level Biology B)

(0)
This lesson describes how maltose, sucrose and lactose are synthesised during condensation reactions and broken down during hydrolysis reactions. The PowerPoint and accompanying question sheet have been designed to cover point 1.1 (iii) of the Edexcel A-level Biology B specification but also make links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as enzymes, translocation in the phloem and the lac operon in the control of gene expression. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge
The effect of gene mutations on amino acid sequences (Edexcel A-level Biology B)
GJHeducationGJHeducation

The effect of gene mutations on amino acid sequences (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the different effects that gene mutations can have on the amino acid sequence of a protein. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 1.4 (viii) & (ix) as detailed in the Edexcel A-level Biology B specification and includes substitutions, deletions and insertions and considers a real life example in sickle cell anaemia. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered earlier in this topic. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of gene mutation whilst challenging the students to recognise three terms which are associated with the genetic code. The main focus of the lesson is substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. Students will learn that a substitution is responsible for the new allele that causes sickle cell anaemia and they are tested on their understanding through an exam-style question. As with all of the questions, a mark scheme is included in the PowerPoint which can be displayed to allow the students to assess their understanding. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
Structure of an amino acid (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of an amino acid (Edexcel A-level Biology B)

(0)
This engaging lesson acts as an introduction to topic 1.3 (proteins) by introducing the general structure of an amino acid. The PowerPoint lesson has been designed to cover point 1.3 (i) as detailed in the Edexcel A-level Biology B specification and provides a clear introduction to the following lesson on the formation of polypeptides, protein structures and globular and fibrous proteins. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. One more quiz round called LINK TO THE FUTURE is used to conclude the lesson and demonstrates the range of roles performed by amino acids in the latter part of the course including translation at the ribosomes.
Aerobic respiration (Edexcel A-level Biology B)
GJHeducationGJHeducation

Aerobic respiration (Edexcel A-level Biology B)

(0)
This detailed lesson describes each of the 4 stages of aerobic respiration and explains how this cellular reaction yields ATP and generates heat. The engaging PowerPoint and accompanying resource have been designed to cover points 5.1 (i) and (ii) of the Edexcel A-level Biology B specificaiton and acts as a clear introduction for the upcoming lessons where the finer details of glycolysis, the Link reaction and Krebs cycle and oxidative phosphorylation are described The lesson begins with an introduction to glycolysis and students will learn how this first stage of aerobic respiration is also the first stage when oxygen is not present. This stage involves 10 reactions and an opportunity is taken to explain how each of these reactions is catalysed by a different, specific intracellular enzyme. A version of “GUESS WHO” challenges students to use a series of structural clues to whittle the 6 organelles down to just the mitochondrion so that they can learn how the other three stages take place inside this organelle. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the link reaction and the Krebs cycle to run and that these stages produce the waste product of carbon dioxide. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP and the the formation of water when oxygen acts as the final electron acceptor.