Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1215k+Views

2022k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Specialised and efficient exchange surfaces (OCR A-level Biology)
GJHeducationGJHeducation

Specialised and efficient exchange surfaces (OCR A-level Biology)

(0)
This lesson explains the need for specialised exchange surfaces and uses examples to describe the features of an efficient exchange surface. The PowerPoint and accompanying worksheets have been designed to cover points 3.1.1 (a & b) of the OCR A-level Biology A specification and also have been specifically planned to prepare the students for the upcoming lessons in module 3 on gas exchange and mass transport in animals. The students are likely to have been introduced to the surface area to volume ratio at GCSE, but understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase this relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson that walks them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of a single-celled and multicellular organisms and this leads into the next part of the lesson, where the adaptations of large organisms to increase this ratio at the exchange surfaces are covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. In addition to the ratio, time is taken to discuss and describe how the maintenance of a steep concentration gradient and a thin membrane are important for the rate of diffusion and again biological examples are used in humans and other organisms to increase the understanding. Fick’s law of diffusion is also introduced as a mechanism to help the students to recall that surface area, concentration difference and thickness of membrane govern the rate of simple diffusion. As well as making links to upcoming topics, prior knowledge checks are used to challenge the students on their knowledge of previously-covered modules which include inorganic ions, organelles, cell membrane transport and tissues.
Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)

(0)
This lesson describes how Fick’s law of diffusion is governed by the three main properties of gas exchange surfaces in living organisms. The PowerPoint and accompanying worksheets have been designed to cover points 2.1 (i & ii) of the Edexcel International A-level Biology specification and there is a particular focus on the relationship between the size of an organism or structure and its surface to volume ratio. Adolf Fick is briefly introduced at the start of the lesson and the students will learn that his law of diffusion governs the diffusion of a gas across a membrane and is dependent on three properties. The students are likely to know that surface area is one of these properties but although they may have been introduced to the surface area to volume ratio at iGCSE, their understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase the relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson to walk them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of a human to increase the ratio at the gas exchange surface is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. The remainder of the lesson introduces concentration difference and thickness of membrane as the other two properties in Fick’s law of diffusion and students are reminded that the maintenance of a steep concentration gradient and a reduction in the diffusion distance are critical for this transport mechanism. This lesson has been specifically planned to prepare students for the next lesson which describes how the structure of the mammalian lung is adapted for rapid gas exchange (specification point 2.1 [iii])
Human gas exchange system (AQA A-level Biology)
GJHeducationGJHeducation

Human gas exchange system (AQA A-level Biology)

(0)
This lesson describes the gross structure of the human gas exchange system, including the trachea, bronchi, bronchioles and lungs. The PowerPoint and accompanying resources are part of the third lesson in a series of 6 which have been designed to cover the detail of topic 3.2 in the AQA A-level Biology specification which is titled gas exchange and this lesson has been specifically planned to prepare students for the next lesson where the essential features of the alveoli are described. The lesson is filled with a range of activities such as guided discussion periods, exam-style questions (with markschemes) and quiz competitions and these run alongside the slides containing the detailed A-level Biology content to cover the following features: The incomplete rings of cartilage, ciliated pseudostratified columnar epithelium and goblet cells in the trachea The narrowing airways of the primary, secondary and tertiary bronchi The elastic fibres and smooth muscle in the terminal and respiratory bronchioles The pleural cavity and fluid of the lungs When describing the production of mucus by the goblet cells in the trachea, time is taken to consider cystic fibrosis and the inheritance of this autosomal recessive disorder. Students will be supported in working out genotypes from a pedigree tree to prepare them for the topic of inheritance (7.1)
Surface area to volume ratio (AQA A-level Biology)
GJHeducationGJHeducation

Surface area to volume ratio (AQA A-level Biology)

(0)
This lesson describes the relationship between the size of an organism or structure and its surface to volume ratio. The PowerPoint and accompanying worksheets have been designed to cover point 3.1 of the AQA A-level Biology specification and also have been specifically planned to prepare the students for the upcoming lessons in topic 3 on gas exchange and absorption in the ileum. The students are likely to have been introduced to the ratio at GCSE, but understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of the surface area to volume ratio in order to increase this relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson that walks them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of larger organisms to increase the ratio at their exchange surfaces is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. This is further demonstrated by the villi and the microvilli on the enterocytes that form the epithelial lining of these folds in the ileum. The final part of the lesson introduces Fick’s law of diffusion so that students are reminded that the steepness of a concentration gradient and the thickness of a membrane also affect the rate of diffusion.
Specialised features of the gametes (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Specialised features of the gametes (Edexcel Int. A-level Biology)

(0)
This lesson describes the relationship between the specialised features of the mammalian egg and sperm and their functions. The PowerPoint and accompanying resources have been designed to cover point 3.11 of the Edexcel International A-level Biology specification and includes a focus on the acrosome in the head of the sperm and the zona pellucida in the egg The lessons at the start of topic 3 (Cell structure, Reproduction and Development) described the ultrastructure of eukaryotic cells, so this knowledge is referenced throughout the lesson and the students are challenged on their recall and understanding through a range of prior knowledge checks. For example, two of the exam-style questions that are included in the resources challenge the students to explain why a sperm cell is classified as an eukaryotic cell and to recognise the centrioles and the nucleus from structural descriptions. Along with the mitochondria, time is then taken to discuss and to describe the role of these organelles in relation to the function of the sperm cell. When considering the fusion of the haploid nuclei to form a diploid nucleus in the nucleus, links are made to the upcoming topic of mitosis and the significance of this form of nuclear division. The importance of the enzymes that are found inside the acrosome is emphasised and this leads into the second half of the lesson where the layers surrounding the plasma membrane of the egg cell (corona radiata and zona pellucida) are examined The final part of this lesson has been specifically planned to prepare the students for the next lesson in topic 3, where the acrosome reaction, cortical reaction and the fusion of nuclei that are involved in fertilisation are described
Topics 3.1, 3.2 & 3.3 (AQA A-level Biology)
GJHeducationGJHeducation

Topics 3.1, 3.2 & 3.3 (AQA A-level Biology)

7 Resources
This bundle contains 7 lessons which are highly detailed and cover the following points in the surface area to volume ratio, gas exchange and digestion and absorption topics of the AQA A-level Biology specification: The relationship between the size of an organism or structure and its surface area to volume ratio The development of systems in larger organisms as adaptations that facilitate exchange as this ratio reduces Adaptations of gas exchange surfaces in single-celled organisms, insects, bony fish and in the leaf of a dicotyledonous plant The gross structure of the human gas exchange system The essential features of the alveolar epithelium over which gas exchange takes place Ventilation and the exchange of gases in the lungs Digestion in mammals of carbohydrates, proteins and lipids Mechanisms for the absorption of the products of digestion by cells lining the ileum If you would like to sample the quality of lessons in this bundle, then download the alveolar epithelium and absorption in the ileum lessons as these have been uploaded for free
The characteristic features of kingdoms (WJEC A-level Biology)
GJHeducationGJHeducation

The characteristic features of kingdoms (WJEC A-level Biology)

(0)
This lesson describes the characteristic features of the Animalia, Plantae, Fungi, Protoctista and Prokaryotae kingdoms. The engaging PowerPoint and accompanying resources have been designed to cover point (d) in AS unit 2, topic 1 of the WJEC A-level Biology specification This lesson begins with a knowledge recall as students have to recognise that prior to 1990, kingdom was the highest taxa in the classification hierarchy. Moving forwards, they will recall the names of the five kingdoms and immediately be challenged to split them so that the prokaryotae kingdom is left on its own. An opportunity is taken at this point to check on their prior knowledge of the structure of a bacterial cell as covered in unit 1, topic 2. These prior knowledge checks are found throughout the lesson (along with current understanding checks) as students are also tested on their knowledge of the structure and function of cellulose. This is found in the section of the lesson where the main constituent of the wall can be used to distinguish between plantae, fungi and prokaryotae. Quick quiz competitions, such as YOU DO THE MATH and SAY WHAT YOU SEE are used to introduce key values and words in a fun and memorable way. The final part of the lesson looks at the protoctista kingdom and students will come to understand how these organisms tend to share a lot of animal or plant-like features. Both of the accompanying resources have been differentiated to allow students of differing abilities to access the work and this lesson has been written to tie in with the previously uploaded lesson on classification and the binomial naming system
Three-domain classification & morphological convergence (WJEC A-level Biology)
GJHeducationGJHeducation

Three-domain classification & morphological convergence (WJEC A-level Biology)

(0)
This lesson introduces the three-domain system and describes some of the biochemical methods used in classification to overcome the problems of morphological convergence. The PowerPoint and accompanying resources have been designed to cover points [c] and [e] in AS unit 2, topic 1 of the WJEC A-level Biology specification The lesson begins with an introduction of Carl Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in a previous lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank. Moving forwards, the rest of the lesson considers other molecules that can be compared between species for classification purposes and the primary structure of cytochrome is described and discussed. At this point in the lesson, the students are also tested on their knowledge of the nature of the genetic code and have to explain how mutations to DNA can also be used for comparative purposes. The use of DNA genetic fingerprinting is briefly introduced and this is described in greater detail in a future lesson about assessing biodiversity at a molecular level
Topic 3.2: Gas exchange (AQA A-level Biology)
GJHeducationGJHeducation

Topic 3.2: Gas exchange (AQA A-level Biology)

4 Resources
This bundle contains 4 lessons which cover the following content that’s set out in topic 3.2 (Gas exchange) of the AQA A-level Biology specification: Adaptations of gas exchange surfaces as shown by the gas exchange in single-celled organisms, insects, bony fish and the leaves of dicotyledonous plants The gross structure of the human gas exchange system The essential features of the alveolar epithelium as a surface over which gas exchange takes place The mechanism of breathing All of the lessons are detailed and have been intricately planned to contain a wide range of tasks that will challenge the students on their understanding of the current topic as well as their recall of knowledge from previously-covered topics. In this way, the students are encouraged to make links between biological processes in different topics so they are prepared for assessment questions which do just that. Lessons covering topics 3.1, 3.3 and 3.4 are also uploaded
Module 3.1.1: Exchange surfaces (OCR A-level Biology A)
GJHeducationGJHeducation

Module 3.1.1: Exchange surfaces (OCR A-level Biology A)

5 Resources
This lesson bundle contains 5 lesson PowerPoints and together with their accompanying worksheets, they will engage and motivate the students whilst covering the following specification points in module 3.1.1 (Exchange surfaces) of the OCR A-level Biology A specification: The need for specialised exchange surfaces The features of an efficient exchange surface The structures and functions of the components of the mammalian gaseous exchange system The mechanism of ventilation in mammals The mechanisms of ventilation and gas exchange in bony fish and insects Found interspersed within the detailed A-level Biology content in the slides are current understanding and prior knowledge checks and these are followed by displayed mark schemes to allow students to assess their progress. There are also differentiated tasks, guided discussion periods and quiz competitions that introduce key values and terms in a fun and memorable way If you would like to see the quality of lessons included in this bundle, then download the mammalian gaseous exchange system and ventilation and gas exchange in insects lessons as these have been uploaded for free
Levels of organisation (WJEC A-level Biology)
GJHeducationGJHeducation

Levels of organisation (WJEC A-level Biology)

(0)
This lesson describes the levels of organisation, including the aggregation of cells into tissues, tissues into organs and organs into organ systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point (d) of AS unit 1, topic 2 of the WJEC A-level Biology specification and focuses on the levels of organisation in humans and plants. Please note that the lesson does not contain prepared slides of tissue as this is covered in a later lesson. The lesson begins by using the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students are challenged to remember how the shape and arrangement of these cells differ in the trachea and alveoli in relation to their function. The link between specialised cells and tissues is made at this point of the lesson so students are reminded that a tissue is a group of cells that work together to perform a specific function or set of functions. Moving forwards, a quick quiz competition will challenge the students to recognise the liver, kidney, spinal cord and pancreas from a brief functional description and this leads into a series of questions that links back to topics 1 and earlier in topic 2 where proteins, organelles and carbohydrates were originally covered. These prior knowledge checks are found throughout the lesson, along with current understanding checks, and all of the mark schemes are embedded into the PowerPoint to allow students to assess their progress. In terms of organ systems, a quick task challenges them to recognise 8 of the 11 that are found in humans from descriptions and this leaves them to identify the gaseous exchange, digestive and reproductive systems as the remaining 3. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy cells in the mesophyll layer and the guard cells are covered at length and in detail. The cells found in the xylem and phloem tissue are also discussed.
Organisation of multicellular organisms (Edexcel SNAB)
GJHeducationGJHeducation

Organisation of multicellular organisms (Edexcel SNAB)

(0)
This lesson describes how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 3.13 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and focuses on the levels of organisation in humans and plants The lesson begins by using the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students are challenged to remember how the shape and arrangement of these cells differ in the trachea and alveoli in relation to their function. The link between specialised cells and tissues is made at this point of the lesson so students are reminded that a tissue is a group of cells that work together to perform a specific function or set of functions. Moving forwards, a quick quiz competition will challenge the students to recognise the liver, kidney, spinal cord and pancreas from a brief functional description and this leads into a series of questions that links back to topics 1 and 2 and earlier in topic 3 where blood clotting, proteins, osmosis, organelles, methods of transport, carbohydrates and enzymes were originally covered. These prior knowledge checks are found throughout the lesson, along with current understanding checks, and all of the mark schemes are embedded into the PowerPoint to allow students to assess their progress. In terms of organ systems, a quick task challenges them to recognise 8 of the 11 that are found in humans from descriptions and this leaves them to identify the gaseous exchange, digestive and reproductive systems as the remaining 3. This leads into a section about cystic fibrosis as this genetic disorder impairs the functioning of these systems. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy cells in the mesophyll layer and the guard cells are covered at length and in detail. The cells found in the xylem and phloem tissue are also discussed.
Cell structure and organisation (WJEC A-level Biology)
GJHeducationGJHeducation

Cell structure and organisation (WJEC A-level Biology)

4 Resources
This lesson bundle contains 4 lessons which are highly detailed and engaging. Hours of planning has gone into these lessons to ensure that the wide range of activities cover the following specification points in AS unit 1, topic 2 (Cell structure and organisation) of the WJEC A-level Biology specification: The structure and function of the organelles found in animal and plant eukaryotic cells The structure of prokaryotic cells and viruses The levels of organisation, including the aggregation of cells into tissues, tissues into organs, and organs into organ systems As well as covering the detailed A-level content, the guided discussion points, differentiated tasks and quiz competitions will engage and motivate the students.
Structure and functions of organelles (WJEC A-level Biology)
GJHeducationGJHeducation

Structure and functions of organelles (WJEC A-level Biology)

(0)
This lesson describes the structure and functions of the organelles that are found in eukaryotic cells. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point (a) in AS Unit 1, topic 2 of the WJEC A-level Biology specification As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all 6 modules in the OCR course and intricate planning has ensured that links to the lessons earlier in AS unit 1 are made as well as to the upcoming topics in the other units. The lesson uses a wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, to maintain motivation and engagement whilst describing the relationship between the structure and function of the following organelles: nucleus nucleolus centrioles ribosomes rough endoplasmic reticulum Golgi body lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane vacuole chloroplasts plasmodesmata All of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to go through all of the tasks
Structure of viruses (WJEC A-level Biology)
GJHeducationGJHeducation

Structure of viruses (WJEC A-level Biology)

(0)
This engaging lesson describes the structures of virus particles and explains why viruses are described as acellular and non-living. The PowerPoint and accompanying resource are part of the second lesson in a series of 2 lessons which have been designed to cover the detail of specification point (b) in AS unit 1, topic 2 of the WJEC A-level Biology specification Details of the COVID-19 epidemic are included in the lesson to increase relevance and to help students to understand this biological topic in greater depth. They will understand that the lack of cell structures results in an acellular classification and the fact that it is unable to reproduce without a host is one of the additional reasons that renders it as non-living. The main focus of the lesson is the nucleic acid, the capsid and the attachment proteins that are present in these microorganisms and time is taken to explain how these structures are involved in the infection of a host cell. The lipid membrane is also introduced and links are made to the previous lessons on eukaryotic cells. The final section uses a version of BBC 1’s POINTLESS to introduce a number of viral diseases in animals and the use of a glycoprotein by HIV to attach to helper T cells is briefly introduced so students are prepared for the immunology option if taken
Prenatal testing & genetic screening (Edexcel SNAB)
GJHeducationGJHeducation

Prenatal testing & genetic screening (Edexcel SNAB)

(0)
This lesson describes the uses and implications of pre-implantation genetic diagnosis, amniocentesis and chorionic villus sampling. The lesson PowerPoint and accompanying worksheets have been primarily designed to cover point 2.15 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but regular links are made to the earlier content of topics 1 & 2, and their knowledge of topics including the heart and circulation, monohybrid inheritance and cystic fibrosis are tested. The lesson begins by challenging them to use this prior knowledge of topic 2 to identify the letters in the abbreviations PGD and CVS. The involvement of IVF to obtain the embryos (or oocytes) is then discussed and a series of exam-style questions are used to get them to understand how this method screens embryos prior to implantation, so that those identified as having genetic diseases or being carriers are not inserted into the female’s uterus. Mark schemes for all of the questions included in this lesson are embedded into the PowerPoint so students can constantly assess their progress. Moving forwards, Down syndrome (trisomy 21) is used as an example of a chromosomal abnormality that can be tested for using CVS or amniocentesis. Time is taken to describe the key details of both of these procedures so students have a clear understanding of the implications and the invasiveness to the female being tested. The link between amniocentesis and an increased risk of miscarriage is considered and the results of a 2006 study are used to challenge them on their data skills.
Nucleic acids, Genetics and Inheritance (Edexcel SNAB)
GJHeducationGJHeducation

Nucleic acids, Genetics and Inheritance (Edexcel SNAB)

16 Resources
This lesson bundle contains 16 lessons which have been designed to cover the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points which focus on the structure of DNA and RNA, their roles in replication and protein synthesis, and genetics and inheritance. The lesson PowerPoints are highly detailed, and along with their accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 6 of the course: 2.5 (i): Know the basic structure of mononucleotides (deoxyribose or ribose linked to a phosphate and a base, including thymine, uracil, cytosine, adenine or guanine) and the structures of DNA and RNA (polynucleotides composed of mononucleotides linked through condensation reactions) 2.5 (ii): Know how complementary base pairing and the hydrogen bonding between two complementary strands are involved in the formation of the DNA double helix 2.6 (i): Understand the process of protein synthesis (transcription) including the role of RNA polymerase, translation, messenger RNA, transfer RNA, ribosomes and the role of start and stop codons 2.6 (ii): Understand the roles of the DNA template (antisense) strand in transcription, codons on messenger RNA and anticodons on transfer RNA 2.7: Understand the nature of the genetic code 2.8: Know that a gene is a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain 2.11 (i): Understand the process of DNA replication, including the role of DNA polymerase 2.12 (i): Understand how errors in DNA replication can give rise to mutations 2.12 (ii): Understand how cystic fibrosis results from one of a number of possible gene mutations 2.13 (i): Know the meaning of the terms: gene, allele, genotype, phenotype, recessive, dominant, incomplete dominance, homozygote and heterozygote 2.13 (ii): Understand patterns of inheritance, including the interpretation of genetic pedigree diagrams, in the context of monohybrid inheritance 2.14: Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems 2.15 (i): Understand the uses of genetic screening, including the identification of carriers, pre-implantation genetic diagnosis (PGD) and prenatal testing, including amniocentesis and chorionic villus sampling 2.15 (ii): Understand the implications of prenatal genetic screening 3.8 (i): The loci is a location of genes on a chromosome 3.8 (ii): The linkage of genes on a chromosome and sex linkage 3.12: Understand how cells become specialised through differential gene expression, producing active mRNA leading to synthesis of proteins, which in turn control cell processes or determine cell structure in animals and plants, including the lac operon 3.14 (i): Phenotype is an interaction between genotype and the environment 3.15: Understand how some phenotypes are affected by multiple alleles for the same gene at many loci (polygenic inheritance) as well as the environment and how this can give rise to phenotypes that show continuous variation 6.4: Know how DNA can be amplified using the polymerase chain reaction (PCR) 6.10: Understand how one gene can give rise to more than one protein through posttranscriptional changes to messenger RNA (mRNA).
The ultrastructure of cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The ultrastructure of cells (Edexcel Int. A-level Biology)

6 Resources
This lesson bundle contains 6 lessons which have been designed to cover the Edexcel International A-level Biology specification points which focus on the structure of eukaryotic and prokaryotic cells and the functions of their components. The lesson PowerPoints are highly detailed, and along with the accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 4 of the course: 2.2 (i): Know the structure and function of cell membranes 3.1: Know that all living organisms are made of cells, sharing some common features 3.2: Understand how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems 3.3: Know the ultrastructure of eukaryotic cells, including nucleus, nucleolus, ribosomes, rough and smooth endoplasmic reticulum, mitochondria, centrioles, lysosomes, and Golgi apparatus 3.4: Understand the role of the rough endoplasmic reticulum (rER) and the Golgi apparatus in protein transport within cells, including their role in the formation of extracellular enzymes 3.5: Know the ultrastructure of prokaryotic cells, including cell wall, capsule, plasmid, flagellum, pili, ribosomes, mesosomes and circular DNA 3.11: Understand how mammalian gametes are specialised for their functions (including the acrosome in sperm and the zona pellucida in the egg) 4.1 (i): Know the ultrastructure of plant cells (cell walls, chloroplasts, amyloplasts, vacuole, tonoplast, plasmodesmata, pits and middle lamella) and be able to compare it with animal cells 4.1 (ii): understand the function of the structures listed in (i)
DNA, RNA, Genetics and Inheritance (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

DNA, RNA, Genetics and Inheritance (Edexcel Int. A-level Biology)

16 Resources
This lesson bundle contains 16 lessons which have been designed to cover the Edexcel International A-level Biology specification points which focus on the structure of DNA and RNA, their roles in replication and protein synthesis, and genetics and inheritance. The lesson PowerPoints are highly detailed, and along with their accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content found in topics 2, 3 and 6 of the course: 2.9 (i): Know the basic structure of mononucleotides (deoxyribose or ribose linked to a phosphate and a base, including thymine, uracil, adenine, cytosine or guanine) and the structures of DNA and RNA (polynucleotides composed of mononucleotides linked by condensation reactions to form phosphodiester bonds) 2.9 (ii): Know how complementary base pairing and the hydrogen bonding between two complementary strands are involved in the formation of the DNA double helix 2.10 (i): Understand the process of DNA replication, including the role of DNA polymerase 2.11: Understand the nature of the genetic code 2.12: Know that a gene is a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain 2.13 (i): understand the process of protein synthesis (transcription and translation), including the role of RNA polymerase, translation, messenger RNA, transfer RNA, ribosomes and the role of start and stop codons 2.13 (ii): Understand the roles of the DNA template (antisense) strand in transcription, codons on messenger RNA and anticodons on transfer RNA 2.14 (i): Understand how errors in DNA replication can give rise to mutations (substitution, insertion and deletion of bases) 2.14 (ii): Know that some mutations will give rise to cancer or genetic disorders, but that many mutations will have no observable effect 2.15 (i): Know the meaning of the terms: gene, allele, genotype, phenotype, recessive, dominant, codominance, homozygote and heterozygote 2.15 (ii): Understand patterns of inheritance, including the interpretation of genetic pedigree diagrams, in the context of monohybrid inheritance 2.15 (iii): Understand sex linkage on the X chromosome, including red-green colour blindness in humans 2.16: Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems 2.17 (i): Understand the uses of genetic screening, including the identification of carriers, pre-implantation genetic diagnosis (PGD) and prenatal testing, including amniocentesis and chorionic villus sampling 2.17 (ii): Understand the implications of prenatal genetic screening 3.9 (i): Know that a locus is the location of genes on a chromosome 3.9 (ii): Understand the linkage of genes on a chromosome 3.18: Understand how cells become specialised through differential gene expression, producing active mRNA, leading to the synthesis of proteins which, in turn, control cell processes or determine cell structure in animals and plants 3.19: Understand how one gene can give rise to more than one protein through posttranscriptional changes to messenger RNA (mRNA). 3.20 (i): Phenotype is an interaction between genotype and the environment 3.21: Understand how some phenotypes are affected by multiple alleles for the same gene at many loci (polygenic inheritance) as well as the environment and how this can give rise to phenotypes that show continuous variation 6.17: Know how DNA can be amplified using the polymerase chain reaction (PCR)
Carbohydrates, lipids, proteins and water (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Carbohydrates, lipids, proteins and water (Edexcel Int. A-level Biology)

9 Resources
This lesson bundle contains 9 lessons which have been designed to cover the Edexcel International A-level Biology specification points which focus on the structure and function of the biological molecules, including water, carbohydrates, lipids and proteins. The lesson PowerPoints are highly detailed, and along with their accompanying worksheets, they have been planned at length to contain a wide range of engaging tasks which cover the following A-level Biology content that’s found in topics 1, 2 and 4 of the course: 1.1: Understand the importance of water as a solvent in transport, including its dipole nature 1.2 (i): Know the difference between monosaccharides, disaccharides and polysaccharides, including glycogen and starch (amylose and amylopectin) 1.2 (ii): Be able to relate the structures of monosaccharides, disaccharides and polysaccharides to their roles in providing and storing energy 1.4: Know how monosaccharides join to form disaccharides (sucrose, lactose and maltose) and polysaccharides (glycogen and amylose) through condensation reactions forming glycosidic bonds, and how these can be split through hydrolysis reactions 1.5 (i): Know how a triglyceride is synthesised by the formation of ester bonds during condensation reactions between glycerol and three fatty acids. 1.5 (ii): Know the differences between saturated and unsaturated lipids 2.6 (i): Know the basic structure of an amino acid 2.6 (ii): Understand the formation of polypeptides and proteins (amino acid monomers linked by peptide bonds in condensation reactions) 2.6 (iii): Understand the significance of a protein’s primary structure in determining its three-dimensional structure and properties (globular and fibrous proteins and the types of bonds involved in its three-dimensional structure) 4.3: Understand the structure and function of the polysaccharides starch and cellulose, including the role of hydrogen bonds between β-glucose molecules in the formation of cellulose microfibrils