Hero image

GJHeducation's Shop

Average Rating4.51
(based on 926 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1311k+Views

2117k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Three-domain classification & morphological convergence (WJEC A-level Biology)
GJHeducationGJHeducation

Three-domain classification & morphological convergence (WJEC A-level Biology)

(0)
This lesson introduces the three-domain system and describes some of the biochemical methods used in classification to overcome the problems of morphological convergence. The PowerPoint and accompanying resources have been designed to cover points [c] and [e] in AS unit 2, topic 1 of the WJEC A-level Biology specification The lesson begins with an introduction of Carl Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in a previous lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank. Moving forwards, the rest of the lesson considers other molecules that can be compared between species for classification purposes and the primary structure of cytochrome is described and discussed. At this point in the lesson, the students are also tested on their knowledge of the nature of the genetic code and have to explain how mutations to DNA can also be used for comparative purposes. The use of DNA genetic fingerprinting is briefly introduced and this is described in greater detail in a future lesson about assessing biodiversity at a molecular level
Natural selection and adaptations (WJEC A-level Biology)
GJHeducationGJHeducation

Natural selection and adaptations (WJEC A-level Biology)

(0)
This lesson describes how biodiversity is generated through natural selection and leads to behavioural, anatomical and physiological adaptations. The PowerPoint and accompanying resources have been designed to cover specification points (m) & (n) in AS unit 2, topic 1 of the WJEC A-level Biology specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques as covered earlier in topic 1. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links back to the topic of taxonomy and students have to answer questions about species and classification hierarchy. Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
Assessing biodiversity (WJEC A-level Biology)
GJHeducationGJHeducation

Assessing biodiversity (WJEC A-level Biology)

(0)
This lesson explains the meaning of biodiversity and describes how it can be assessed in a habitat, in a species level at a genetic level and at a molecular level. The engaging PowerPoint and accompanying resources have been designed to cover points (h-l) in AS unit 2, topic 1 of the WJEC A-level Biology specification but as a lot of genetic content is covered when considering diversity within a species, this lesson can be used as an introduction to the upcoming topics of inheritance A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz introduces biodiversity, loci, allele and recessive and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to assess the biodiversity within a habitat and within a species and at a molecular level. The variety of alleles in the gene pool of a population increases the genetic diversity so a number of examples are used to demonstrate how the number of phenotypes increases with the number of alleles at a locus. The CFTR gene is used to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). Moving forwards, a step by step guide to complete a worked example to calculate a value of D using Simpson’s index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise. The final part of the lesson considers how DNA fingerprinting can be used to assess biodiversity at a molecular level and again a series of exam-style questions are used to challenge the students to apply their newly-acquired knowledge to an unfamiliar situation.
Genetic screening & prenatal testing (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Genetic screening & prenatal testing (Edexcel Int. A-level Biology)

(0)
This lesson describes the uses and implications of pre-implantation genetic diagnosis, amniocentesis and chorionic villus sampling. The lesson PowerPoint and accompanying worksheets have been primarily designed to cover point 2.17 of the Edexcel International A-level Biology specification but there are regular checks of their knowledge of the content of topic 2, where topics including monohybrid inheritance and cystic fibrosis are tested. The lesson begins by challenging them to use this prior knowledge of topic 2 to identify the letters in the abbreviations PGD and CVS. The involvement of IVF to obtain the embryos (or oocytes) is then discussed and a series of exam-style questions are used to get them to understand how this method screens embryos prior to implantation, so that those identified as having genetic diseases or being carriers are not inserted into the female’s uterus. Mark schemes for all of the questions included in this lesson are embedded into the PowerPoint so students can constantly assess their progress. Moving forwards, Down syndrome (trisomy 21) is used as an example of a chromosomal abnormality that can be tested for using CVS or amniocentesis. Time is taken to describe the key details of both of these procedures so students have a clear understanding of the implications and the invasiveness to the female being tested. The link between amniocentesis and an increased risk of miscarriage is considered and the results of a 2006 study are used to challenge them on their data skills.
Organisation of multicellular organisms (Edexcel SNAB)
GJHeducationGJHeducation

Organisation of multicellular organisms (Edexcel SNAB)

(0)
This lesson describes how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 3.13 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and focuses on the levels of organisation in humans and plants The lesson begins by using the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students are challenged to remember how the shape and arrangement of these cells differ in the trachea and alveoli in relation to their function. The link between specialised cells and tissues is made at this point of the lesson so students are reminded that a tissue is a group of cells that work together to perform a specific function or set of functions. Moving forwards, a quick quiz competition will challenge the students to recognise the liver, kidney, spinal cord and pancreas from a brief functional description and this leads into a series of questions that links back to topics 1 and 2 and earlier in topic 3 where blood clotting, proteins, osmosis, organelles, methods of transport, carbohydrates and enzymes were originally covered. These prior knowledge checks are found throughout the lesson, along with current understanding checks, and all of the mark schemes are embedded into the PowerPoint to allow students to assess their progress. In terms of organ systems, a quick task challenges them to recognise 8 of the 11 that are found in humans from descriptions and this leaves them to identify the gaseous exchange, digestive and reproductive systems as the remaining 3. This leads into a section about cystic fibrosis as this genetic disorder impairs the functioning of these systems. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy cells in the mesophyll layer and the guard cells are covered at length and in detail. The cells found in the xylem and phloem tissue are also discussed.
The role of the rER and Golgi in protein transport (Edexcel SNAB)
GJHeducationGJHeducation

The role of the rER and Golgi in protein transport (Edexcel SNAB)

(0)
This lesson describes the role of the rER and the Golgi apparatus in the formation of proteins, the transport within cells and their secretion. The PowerPoint and accompanying resources have been designed to cover point 3.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also includes key details about the role of the cytoskeleton in the transport of the vesicles that contain the protein between the organelles and the membrane. The lesson begins with the introduction of the cytoskeleton and explains how this network of protein structures transverses across the cytoplasm and is fundamental to the transport of molecules between organelles. The lesson has been planned to closely tie in with the previous lesson on the ultrastructure of eukaryotic cells and students are challenged on their knowledge of the function of the organelles involved in protein formation (and modification) through a series of exam-style questions. By comparing their answers against the mark scheme embedded in the PowerPoint, students will be able to assess their understanding of the following: Transcription in the nucleus to form an mRNA strand and the exit of this nucleic acid through the nuclear pore Translation at the ribosomes on the surface of the rER to assemble the protein Transport of the vesicles containing the protein to the Golgi apparatus Modification of the protein at the Golgi apparatus Formation of the Golgi vesicle and its transport to the cell membrane for exocytosis Time is taken to discuss the finer details of this process such as the arrival of the vesicle at the cis face and the transport away from the trans face and the requirement of ATP for the transport of the vesicles along the microtubule track and exocytosis. The remainder of the lesson uses a series of exam-style questions about digestive enzymes (extracellular proteins) to challenge the students on their recall of the structure of starch and proteins
Maintenance of biodiversity (Edexcel A-level Biology B)
GJHeducationGJHeducation

Maintenance of biodiversity (Edexcel A-level Biology B)

(0)
This lesson describes the ethical and economic reasons for the maintenance of biodiversity. The engaging PowerPoint and accompanying worksheets are filled with real-life biological examples and have been designed to cover point 3.3 (ii) of the Edexcel A-level Biology B specification. Many hours of research have gone into the planning of the lesson so that interesting examples are included to increase the relevance of the multitude of reasons to maintain biodiversity. These include the gray wolves and beavers of Yellowstone National Park and the Za boabab in the Madagascar rainforests as examples of keystone species. Students will learn that these species have a disproportionate effect on their environment relative to their abundance and exam-style questions and guided discussion periods are used to challenge them to explain their effect on other species in the habitat. The latest A-level Biology exams have a heavy mathematical content and this is reflected in this lesson as students are challenged to complete a range of calculations to manipulate data to support their biological-based answers. All of the exam questions that are included throughout the lesson have mark schemes embedded into the PowerPoint to allow the students to assess their progress. Moving fowards, the economic ans aesthetic reasons to maintain biodiversity are considered, and there is a focus on the soil depletion that occurs when a continuous monoculture is used. The 1 Billion tree scheme that began in New Zealand in 2018 is introduced and the reasons that some groups of people are objecting to what they consider to be a pine monoculture are discussed. Students will recognise that the clear felling of the trees dramatically changes the landscape and that the increased runoff that results can have catastrophic affects for both aquatic life and for humans with floods. A number of quiz competitions are included in the lesson to introduce key terms in a fun and memorable way and some of the worksheets have been differentiated to allow students of differing abilities to access the work
Topic 18: Biodiversity, classification and conservation (CIE A-level Biology)
GJHeducationGJHeducation

Topic 18: Biodiversity, classification and conservation (CIE A-level Biology)

9 Resources
Hours of research and planning has gone into each and every one of the 9 lessons that are included in this lesson bundle that covers topic 18 of the CIE A-level Biology course . Conscious that some students do not fully engage in the topics of biodiversity, classsification and conservation, the lessons have been designed to contain a wide range of tasks which will motivate the students whilst the content of the following specification points are covered: 18.1: Biodiversity Define the terms species, ecosystem and niche Explain that biodiversity can be considered at three different levels Explain the importance of random sampling in determining the biodiversity of an area Use suitable methods to assess the distribution and abundance of organisms in a local area Use Spearman’s rank correlation to analyse the relationship between the distribution and abundance of species and abiotic or biotic factors Use Simpson’s Index of diversity 18.2: Classification Describe the classification of species into the 8 taxonomic divisions Outline the characteristic features of the three domains Outline the characteristic features of the kingdoms Explain why viruses are not included in the three domain classification and outline how they are classified 18.3: Conservation The reasons for the need to maintain biodiversity Discuss methods of protecting endangered species The role of non-governmental organisations like the WWF and CITES in local and global conservation If you would like to sample the quality of the lessons in this bundle, then download the Spearman’s rank correlation, features of the kingdoms and WWF, CITES and conservation lesson as these have been uploaded for free
Module 4.2.1: Biodiversity (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4.2.1: Biodiversity (OCR A-level Biology A)

6 Resources
The biodiversity topic may not be every students’ favourite, but questions relating to this module 4 topic are very common in the OCR terminal exams, meaning it can be an area where a lot of marks are unfortunately lost. With this in mind, hours of research and planning has gone into each of the 6 lessons that are included in this bundle to ensure that the slides and accompanying worksheets contain interesting and relevant biological examples that will catch the attention of the students and ultimately increase the likelihood of the retention of the detailed A-level content. There are also regular understanding checks in the form of exam-style questions with accompanying mark schemes to allow the students to assess their progress. The following specification points in module 4.2.1 of the OCR A-level Biology A specification are covered in this bundle: How biodiversity may be considered at different levels Random sampling and non-random sampling (opportunistic, stratified, systematic) How to measure species richness and species evenness The use and interpretation of Simpson’s Index of Diversity How genetic biodiversity may be assessed, including calculations The ecological, economic and aesthetic reasons for maintaining biodiversity In situ and ex situ methods of maintaining biodiversity International and local conservation agreements made to protects species and habitats The “reasons for maintaining biodiversity” lesson has been uploaded for free so if you download this, you will be able to recognise the quality of lesson that can be found in this bundle
Protecting endangered species (CIE A-level Biology)
GJHeducationGJHeducation

Protecting endangered species (CIE A-level Biology)

(0)
This lesson describes and discusses the different methods of protecting endangered species. The engaging PowerPoint and accompanying worksheets have been designed to cover point 18.3 [c] of the CIE A-level Biology specification and the methods described include zoos, botanic gardens, national parks, marine conservation zones and seed banks Hours of research has gone into the planning of this lesson to source interesting examples that increase the relevance of the biological content concerning in situ conservation, and these include the Lizard National Nature Reserve in Cornwall, the Lake Télé Community reserve in the Republic of Congo and the marine conservation zone in the waters surrounding Tristan da Cunha. Students will learn how this form of active management conserves habitats and species in their natural environment, with the aim of minimising human impact whilst maintaining biodiversity. The main issues surrounding this method are discussed, including the fact that the impact of this conservation may not be significant if the population has lost much of its genetic diversity and that despite the management, the conditions that caused the species to become endangered may still be present. A number of quick quiz competitions are interspersed throughout the lesson to introduce key terms and values in a fun and memorable way and one of these challenges them to use their knowledge of famous scientists to reveal the surname, Fossey. Dian Fossey was an American conservationist and her years of study of the mountain gorillas is briefly discussed along with the issue that wildlife reserves can draw poachers and tourists to the area, potentially disturbing the natural habitat. To enrich their understanding of ex situ conservation, the better known examples of ZSL London zoo, Kew Gardens and the Millennium Seed Bank Project in Wakehurst are used. Students will understand how conserving animal species outside of their natural habitat enables human intervention that ensures the animals are fed and given medical assistance when needed as well as reproductive assistance to increase the likelihood of the successful breeding of endangered species. As with the in situ method, the disadvantages are also discussed and there is a focus on the susceptibility of captive populations to diseases as a result of their limited genetic diversity. The final part of the lesson considers how seed banks can be used to ensure that plant species avoid extinction and how the plants can be bred asexually to increase plant populations quickly. Due to the extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of allocated A-level teaching time to cover the tasks and content that is included in the lesson.
The need to maintain biodiversity (CIE A-level Biology)
GJHeducationGJHeducation

The need to maintain biodiversity (CIE A-level Biology)

(0)
This lesson describes the reasons for the need to maintain biodiversity, which include those which are ecological, economic and aesthetic. The PowerPoint and accompanying resources have been designed to cover point 18.3 (b) of the CIE A-level Biology specification. Many hours of research have gone into the planning of the lesson so that interesting examples are included to increase the relevance of the multitude of reasons to maintain biodiversity. These include the gray wolves and beavers of Yellowstone National Park and the Za boabab in the Madagascar rainforests as examples of keystone species. Students will learn that these species have a disproportionate effect on their environment relative to their abundance and exam-style questions and guided discussion periods are used to challenge them to explain their effect on other species in the habitat. The CIE exams have a heavy mathematical content and this is reflected in this lesson as students are challenged to complete a range of calculations to manipulate data to support their biological-based answers. All of the exam questions that are included throughout the lesson have mark schemes embedded into the PowerPoint to allow the students to assess their progress. Moving fowards, the economic ans aesthetic reasons to maintain biodiversity are considered, and there is a focus on the soil depletion that occurs when a continuous monoculture is used. The 1 Billion tree scheme that began in New Zealand in 2018 is introduced and the reasons that some groups of people are objecting to what they consider to be a pine monoculture are discussed. Students will recognise that the clear felling of the trees dramatically changes the landscape and that the increased runoff that results can have catastrophic affects for both aquatic life and for humans with floods. A number of quiz competitions are included in the lesson to introduce key terms in a fun and memorable way and some of the worksheets have been differentiated to allow students of differing abilities to access the work
Totipotent, pluripotent and multipotent stem cells (Edexcel A-level Biology B)
GJHeducationGJHeducation

Totipotent, pluripotent and multipotent stem cells (Edexcel A-level Biology B)

(0)
This lesson describes the meaning of the term stem cell and the differences between totipotent, pluripotent and multipotent stem cells. The PowerPoint and accompanying worksheets have been designed to cover points 7.3 (i) and (ii) of the Edexcel A-level Biology B specification meaning that this lesson also contains discussion periods about the potential opportunities to use stem cells from embryos in medicine. The lesson begins with a knowledge recall of the structure of eukaryotic cells and the students have to use the first letters of each of the four answers to reveal the key term, stem cell. Time is then taken to consider the meaning of cellular differentiation, and this leads into the key idea that not all stem cells are equal when it comes to the number of cell types that they have the potential to differentiate into. A quick quiz round introduces the five degrees of potency, and then the students are challenged to use their understanding of terminology to place totipotency, pluripotency, multipotency, oligopotency and unipotency in the correct places on the potency continuum. Although the latter two do not have to be specifically known based on the content of specification point 7.3 (i), an understanding of their meaning was deemed helpful when planning the lesson as it should assist with the retention of knowledge about totipotency, pluripotency and multipotency. These three highest degrees of potency are the main focus of the lesson, and key details are emphasised such as the ability of totipotent cells to differentiate into any extra-embroyonic cell, which the pluripotent cells are unable to do. The morula, and inner cell mass and trophoblast of the blastocyst are used to demonstrate these differences in potency. The final part of the lesson discusses the decisions that the scientific community have to make about the use of pluripotent embryonic stem cells, adult stem cells and also multipotent foetal stem cells As there is a heavy mathematical content in the current A-level Biology exams, a Maths in a Biology context question is included in the lesson (when introducing the morula) to ensure that students continue to be prepared for the numerous calculations that they will have to tackle in the terminal exams. This resource has been differentiated two ways to allow students of differing abilities to access the work
Zoos and seed banks as conservation methods (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Zoos and seed banks as conservation methods (Edexcel Int. A-level Biology)

(0)
This lesson evaluates the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity. The PowerPoint and accompanying resources have been primarily designed to cover point 4.21 of the Edexcel International A-level Biology specification but as this is potentially the last lesson in this topic, lots of questions and activities have been included that will challenge the students on their knowledge and understanding of topic 4 (Plant structure and function, Biodiversity and Conservation). Hours of research went into the planning of this lesson to source interesting examples and although the main focus of the lesson is the zoo and seed banks as ex situ conservation methods, the lesson begins with a consideration of the importance of the in situ methods that are used in the Lake Télé Community reserve in the Republic of Congo and the marine conservation zone in the waters surrounding Tristan da Cunha. Students will learn how this form of active management conserves habitats and species in their natural environment, with the aim of minimising human impact whilst maintaining biodiversity. To enrich their understanding of ex situ conservation, the well-known examples of ZSL London zoo, Kew Gardens and the Millennium Seed Bank Project in Wakehurst are used. Students will understand how conserving animal species outside of their natural habitat allows for human intervention that ensures the animals are fed and given medical assistance when needed as well as reproductive assistance to increase the likelihood of the successful breeding of endangered species. An emphasis is placed on the desire to reintroduce the species into the wild and the example of some initial successes with the mountain chicken frog in Dominica and Montserrat is discussed. As stated in the specification point, these methods must be evaluated and therefore the issues are also considered and there is a focus on the susceptibility of captive populations to diseases as a result of their limited genetic diversity. The final part of the lesson considers how seed banks can be used to ensure that plant species, which may contain the molecules for medicine development, avoid extinction, and how the plants can be bred asexually to increase plant populations quickly. Due to the extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of allocated A-level teaching time to cover the tasks and content included in the lesson and as explained above, it can also be used as revision of topic 4 content
Autosomal linkage (Edexcel A-level Biology B)
GJHeducationGJHeducation

Autosomal linkage (Edexcel A-level Biology B)

(0)
This lesson explains that autosomal linkage results from the presence of alleles on the same chromosome and uses biological examples to demonstrate this concept. The PowerPoint and accompanying worksheets have been designed to cover point 8.2 (iv) of the Edexcel A-level Biology B specification and supports students in the formation of their descriptions of how these results of these crosses can be explained by the events of meiosis (crossing over) This is a difficult topic which can be poorly understood by students so extra time was taken during the planning to split the concept into small chunks. There is a clear focus on using the number of parent phenotypes and recombinants in the offspring as a way to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the point of contact (chiasma) determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions and a link to the chi squared test which is covered in an upcoming lesson is also made. The main task of the lesson act as understanding check where students are challenged to analyse the results of genetic crosses involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene n humans and also the inheritance of body colour and wing length in Drosophila.
Spearman rank correlation coefficient (Edexcel A-level Biology B)
GJHeducationGJHeducation

Spearman rank correlation coefficient (Edexcel A-level Biology B)

(0)
This lesson describes how to analyse data using the Spearman rank correlation coefficient. The PowerPoint and accompanying exam-style question are part of the second lesson in a series of 2 lessons which have been designed to cover point 10.1 (vi) of the Edexcel A-level Biology B specification. The first lesson in this series described how to analyse data using the standard deviation and the t-test As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
Topic 18.1: Biodiversity (CIE A-level Biology)
GJHeducationGJHeducation

Topic 18.1: Biodiversity (CIE A-level Biology)

3 Resources
The following specification points in topic 18.1 of the CIE A-level Biology specification are covered by these three lessons: [a] Define the terms species, ecosystem and niche [b] Explain that biodiversity is considered at three levels [c] Explain the importance of random sampling in determining the biodiversity of an area [d] Use suitable methods to assess the distribution and abundance of organisms in a local area [e] Use Spearman’s rank correlation [f] Use Simpson’s index of diversity The lessons are detailed, engaging and contain exam-style questions with mark schemes embedded in the PowerPoint to allow the students to apply and assess their understanding
Antibiotic resistance (Edexcel A-level Biology B)
GJHeducationGJHeducation

Antibiotic resistance (Edexcel A-level Biology B)

(0)
This lesson describes the development and spread of antibiotic resistance in bacteria and discusses the difficulties in controlling this spread. The PowerPoint and accompanying worksheet have been designed to cover specification points 6.4 (i & ii) of the Edexcel A-level Biology B specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of the development of resistance by evolution through natural selection. The main task of the lesson challenges the students to form a description to explain how this strain of bacteria developed resistance to methicillin, making use of the five key terms emphasised above. Moving forwards, there is a focus on the hospital as the common location for MRSA infections and students will recognise that this opportunistic pathogen can infect through open wounds to cause sepsis and potentially death. Figures from infections and deaths in hospitals in the US are used to increase the relevance and students will learn how a MRSA prevention program in VHA facilities includes screening of surgery patients to try to reduce its impact. The lesson concludes with a discussion about other methods that can be used by hospitals and general practitioners to reduce the spread of MRSA and to try to prevent the development of resistance in other strains.
Topic 10: Infectious diseases (CIE A-level Biology)
GJHeducationGJHeducation

Topic 10: Infectious diseases (CIE A-level Biology)

4 Resources
This lesson bundle contains 4 lessons, which are fully-resourced and are filled with a range of tasks to engage and motivate the students whilst covering the following specification points in topic 10 of the CIE A-level Biology specification: 10.1 [a]: Define the term disease and explain the difference between an infectious disease and a non-infectious disease [b]: State the name and type of causative organism of cholera, malaria, TB, HIV/AIDS, smallpox and measles [c]: Explain how cholera, malaria, TB and HIV are transmitted 10.2 [a]: Outline how penicillin acts on bacteria and why antibiotics do not affect viruses [b]: Explain in outline how bacteria becomes resistant to antibiotics with reference to mutation and selection [c]: Discuss the consequences of antibiotic resistance and the steps that can be taken to reduce its impact Included in the tasks are exam-style questions, and the mark schemes for each of these are embedded into the PowerPoint to allow the students to assess their progress
Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level Biology)

8 Resources
This bundle contains 8 fully-resourced lessons which have been designed to cover the following content in topic 8 of the Edexcel International A-level Biology specification: 8.1: Know the structure and function of sensory, relay and motor neurones 8.2: Understand how the nervous system of organisms can cause effectors to respond to a stimulus 8.4: Understand how a nerve impulse is conducted along an axon 8.5: Understand the role of myelination in saltatory conduction 8.6 (i): Know the structure and function of synapses in nerve impulse transmission 8.6 (ii): Understand how the pupil dilates and contracts 8.8: Understand how the nervous system of organisms can detect stimuli with reference to rods in the retina of mammals 8.10: Know that the mammalian nervous system consists of the central and peripheral nervous systems 8.13: Understand how coordination in animals is brought about through nervous and hormonal control 8.18: Understand how recombinant DNA can be produced 8.19: Understand how recombinant DNA can be inserted into other cells Each of the lessons contains a wide range of activities, which include exam-style questions, guided discussion periods and quick quiz competitions, and these will motivate the students whilst the difficult A-level content is covered If you would like to see the quality of lessons included in this bundle then download the pupil reflex, saltatory conduction and nervous and hormonal control lessons as these have been uploaded for free
The main stages and significance of mitosis (WJEC A-level Biology)
GJHeducationGJHeducation

The main stages and significance of mitosis (WJEC A-level Biology)

(0)
This lesson describes the main stages of mitosis and explains the significance of this type of nuclear division for the daughter cells produced by the cycle. The PowerPoint and accompanying resources have been designed to cover points 6 (a & b) in topic 6 of AS unit 1 of the WJEC A-level Biology specification and the process of cytokinesis is also described. Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson so that existing errors are addressed and key points are emphasised throughout. Their understanding of interphase is challenged at the start of the lesson to ensure that they realise that it is identical pairs of sister chromatids that enter the M phase. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. There is a focus on the centrioles and the spindle fibres that they produce which contract to drag one chromatid from each pair in opposite directions to the poles of the cell. The remainder of the lesson is a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final quiz round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.