A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This is a concise, fast-paced lesson which guides students through the critical skills needed to calculate the atom economy of a chemical reaction. It has been designed for GCSE students and focuses on the calculation as well as interpreting the final value. In order to calculate the mass of the desired product and other products, students have to be able to calculate the relative formula mass - therefore time is taken to revisit these skills and worked examples are used with this and the actual calculations to enable the students to visualise how they should set their work out. The lesson finishes with some progress check questions where students are challenged to state which of four chemical reactions has the highest atom economy. This lesson could be taught in combination with the percentage yield topic and an accompanying lesson on that calculation is available on this site.
This bundle of 7 lessons covers a lot of the content in Topic C7(Rates of reaction and enrgy changes) of the Edexcel GCSE Combined Science & GCSE Chemistry specifications. The topics covered within these lessons include:
Determining the rate of reaction
The collision theory
The effect of temperature and concentration on the rate of reaction
Catalysts and the rate of reaction
Endothermic and exothermic reactions
Calculating energy changes in reactions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 16 lessons covers the majority of the content in Topic C5 (Monitoring and controlling chemical reactions) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include:
Theoretical yield
Percentage yield
Atom economy
Concentration of solution
Titrations
Titration calculations
Gas calculations
Rates of reaction
The Collision theory
Temperature and the rate of reaction
Concentration and the rate of reaction
Particle size and the rate of reaction
Catalysts and the rate of reaction
Reversible reactions
Temperature and pressure and equilibrium
Choosing reaction conditions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 19 lessons covers the majority of the content in Topic C2 (Elements, compounds and mixtures) of the OCR Gateway A GCSE Chemistry specification. The topics covered within these lessons include:
Relative formula mass
Empirical formula
Pure and impure substances
Filtration and crystallisation
Distillation
Chromatography
Metals and non metals
Electronic structure
Forming ions
Ionic compounds
Simple molecules
Giant covalent structures
Polymer molecules
Metallic bonding
Allotropes of carbon
Graphene and the fullerenes
Changing state
Nanoparticles
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 6 lessons covers the majority of the content in Topic C10 (Metals) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include:
Describe the general properties of metals
Describe metallic bonding in terms of the lattice and electrons and use this to explain malleability and conductivity
Describe alloys as a mixture of a metal with another element
Explain why alloys are used instead of pure metals
The reactivity series
The use of carbon for the extraction of metals from their ores
The series of reactions in the extraction of iron
Extraction of aluminium
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
This bundle of 6 lessons covers all of the content in Topic C9 (The Periodic Table) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include:
The Periodic Table as a method of classifying elements and its use to predict properties
Describe the relationship between group number and outer shell electrons
Describe and predict the properties of the Group 1 elements
Describe the properties and reactions of the Group 7 elements
The transition elements
The noble gases
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
This bundle of 7 lessons covers the majority of the content in Topic P8 (Atomic Physics) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include:
The composition of the nucleus
Isotopes
Identify alpha, beta and gamma radiation by their properties
An understanding of background radiation
The meaning of radioactive decay
Word and nuclide notation in decay equations
Half-life
The effects of ionising radiation on living things
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
This bundle of 5 lessons covers the majority of the content in Topic C2 (Experimental techniques) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include:
Understand the use of paper chromatography
Interpreting paper chromatograms
Pure and impure substances
Separation methods including filtration, crystallisation, distillation, fractional distillation and paper chromatography
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
This bundle of 7 lessons covers most of the content in sub-topic P4.3 (Radioactivity) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include:
Atomic nuclei
Isotopes
Unstable nuclei and emitting particles or gamma rays
Writing balanced equations to represent decay
The concept of the half-life
The different penetrating powers of alpha, beta and gamma
Recall the differences between irradiation and contamination
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 3 lessons covers the majority of the content in the sub-topic C3.4 (Electrolysis) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include:
Recall that metals are formed at the cathode and non-metals are formed at the anode
Predict the products of the electrolysis of ionic compounds in molten state
Describe competing reactions in the electrolysis of aqueous solutions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 3 lessons covers the majority of the content in the sub-topic C2.3 (Properties of materials) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Recall that carbon can form four covalent bonds
Explain the properties of diamond, graphite, fullerenes and graphene in terms of their structures and bonding
Use data to predict states of substances under given substances
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 4 lessons covers the majority of the content in the sub-topic C3.3 (Types of chemical reactions) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include:
Explain reduction and oxidation in terms of the loss or gain of oxygen and the loss or gain of electrons
Recall that acids form hydrogen ions when they dissolve in water and solutions of alkalis contain hydroxide ions
Recognise and describe neutralisation reactions
Write balanced equations for the reactions of carbonates and metals with acids
Recall that relative acidity and alkalinity are measured by pH and describe techniques and apparatus to take these measures
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a concise, fast-paced lesson that introduces students to addition polymers and guides them through drawing displayed formulae to represent both the monomers and polymers involved in these reactions. Students will learn the conditions needed for these reactions and that the polymers produced by addition reactions are the only products. The main part of the lesson involves a step by step guide to show students how to draw displayed formulae. Hints are given throughout the process so that students can remember the key ideas and are able to represent these substances accurately. A number of progress checks have been written into the lesson so that students can assess their understanding any misconceptions can be addressed.
This lesson has been written for GCSE students
This bundle of 4 lessons covers the majority of the content in Topic C2f (Acids, alkalis and titrations) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include:
Describe the use of indicators to distinguish between acidic and alkaline solutions
Understand how to use the pH scale
Know that alkalis can neutralise acids
Describe how to carry out an acid-alkali titration
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
An engaging, practical-based lesson presentation (34 slides), accompanied by an assistance sheet, which together look at how the results of displacement reactions can be used to order the metals into the reactivity series. The lesson begins by introducing a displacement reaction and ensuring that students understand the meaning of this term and how it relates to the topic of the lesson. Students will carry out a series of 12 displacement reactions, involving 4 different metals and will then be challenged to interpret the results to place the metals into their allocated positions in the series. Moving forwards, the students are given the results of more reactions, some which occurred and others which didn’t so they can place the remaining metals into the reactivity series. Time is also taken to understand how the position of hydrogen in the series can be used to predict the results of reactions between metals and acids.
This lesson has been written for GCSE students but could be used with higher ability KS3 students
This lesson explores how the temperature affects the position of equilibrium in a reversible reaction. This can be a difficult topic for students to understand and therefore the aim has been on the key details.
The lesson begins by challenging the students to recall the rules of a dynamic equilibrium in order to recognise how if the equilibrium position changes then so do the concentrations. Links are made during the lesson to related topics such as endothermic and exothermic reactions and some time is taken to go back over calculating energy changes so that the type of reaction can be determined. The forward reaction in the Haber process is used as the example so students can see how an increase in temperature in this exothermic reaction would lead to a decrease in the yield of ammonia. Students are then challenged to use this example to explain how a decrease in temperature would affect the production of methanol. This worksheet is differentiated so students who need extra assistance can still access the learning.
This lesson has been written for GCSE students.
This concise lesson presentation (20 slides) guides students through the effect of changing pressure on the position of the equilibrium. The key skill to this topic involves recalling the rule of increasing pressure and being able to recognise how many moles are on each side of the reaction. For this reason, time is taken to remind the students of the meaning of the mole numbers in a reaction and working through an example together so they can see which side will be favoured. The final part of the lesson involves a game called “The PRESSURE is on” where students are in a race against the clock to balance an equation and then work out which way the equilibrium will shift when either the pressure is increased or decreased.
This lesson has been written for GCSE students.
This lesson presentation looks at the carboxylic acids and focuses on the names, displayed formula, chemical formulae and reactions of this homologous series. The lesson begins with a bit of fun which gets enables the students to recognise that the functional group is COOH. A step by step guide is used to show the students how to draw the displayed formula for ethanoic acid, using the functional group before they apply their knowledge to draw the remaining acids in the first four. This series are connected by a general formula and students are shown how it is worked out for the alkanes and the alkenes so that students can work it out for the acids. Moving forwards, the reactions of these acids is shown and related to the reactions of acids that was previously learnt. Students will recall how to write the name of the salt and the balanced symbol equation.
This lesson has been written for GCSE students
This is an engaging lesson which uses a range of tasks and quiz competitions to ensure that the important details about elements are embedded so that students can use them in related Chemistry topics. The lesson begins by looking at the chemical symbols that are used with the elements. Students do not have to know the symbols off by heart because of the widely available Periodic Table but a sound knowledge will always help going forward. Time is taken to ensure that students understand how the symbols have to be written so that those with two letters consist of a capital and a lower case letter. In a race against each other, students are challenged to complete a crossword by converting symbols to the name of elements. This will result in a winner, a second placed and a third placed student who can be given a gold, silver and bronze medal. The atoms within each of these medals is explored so that students can learn that the gold and silver medals will only be made up of one type of atom and are therefore elements whilst the bronze is an alloy. The remainder of the lesson looks at some of the uses of the different elements and a homework task gets students to put this into written form.
This lesson is suitable for both KS3 and GCSE students.
This lesson has been written for GCSE students, with the main focus being to introduce reversible reactions, show them how to represent them in both word and symbol equations, and to look at some well-known examples. Related topics such as the position of the equilibrium and endothermic and exothermic reactions are briefly mentioned so that students can recognise the potential crossover between topics. Some time is taken during the lesson to challenge the students to write a balanced symbol equation having been given a description of a reversible reaction. This task is differentiated with an assistance sheet so that all are able to access the learning. There are a number of these progress checks in this short lesson so that students can assess their understanding on a regular basis. Students will learn that the reaction in one direction will be exothermic and why this matters in terms of temperature and the equilibrium position. Increasing pressure and the number of moles is also discussed and an answer explained.