Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1234k+Views

2040k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Key concepts in Physics REVISION (Edexcel GCSE Physics)
GJHeducationGJHeducation

Key concepts in Physics REVISION (Edexcel GCSE Physics)

(0)
This fully-resourced revision lesson consists of an engaging PowerPoint and differentiated resources which together challenge the students on their knowledge of the Key concepts in Physics, which are detailed in topic 1 of the Pearson Edexcel GCSE Physics specification . The content in this topic is particularly important because it will be assessed in both paper 1 and paper 2 of the terminal exams. The lesson has been filled with a wide range of activities which test the following specification points: Recall and use the SI units for physical quantities Recall and use multiples and sub-multiples of units Be able to convert between different units Use significant figures and standard form# To fall in line with the heavy mathematical content of this specification, the main task of the lesson challenges the students to carry out a range of calculations where they have to convert between units and leave their answers in a specific form.
Pearson Edexcel IGCSE Physics REVISION LESSONS
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics REVISION LESSONS

9 Resources
This bundle of 9 revision lessons uses a range of exam questions (with explained answers), differentiated tasks and quiz competitions to engage the students whilst challenging their knowledge of the content in the Pearson Edexcel IGCSE Physics specification: All 8 topics are covered by the lessons in this bundle: Topic 1: Forces and motion Topic 2: Electricity Topic 3: Waves Topic 4: Energy resources and energy transfers Topic 5: Solids, liquids and gases Topic 6: Magnetism and electromagnetism Topic 7: Radioactivity and particles Topic 8: Astrophysics There is also an additional lesson which challenges the students on their knowledge of the 21 Physics equations If you want to see the quality of the lessons, download the topic 1 and 7 and equations revision lessons as these are free
Scalar & vector quantities (Edexcel GCSE Physics & Combined Science)
GJHeducationGJHeducation

Scalar & vector quantities (Edexcel GCSE Physics & Combined Science)

(0)
This lesson describes the key difference between scalar and vector quantities and introduces examples of physical factors that fit into each group. The PowerPoint has been designed to cover points 2.1 - 2.4 of the Edexcel GCSE Physics and Combined Science specifications. The lesson begins with an introduction of the fact that some quantities are scalar and some are vector. A quick competition is used to introduce the key term, magnitude, and students will learn that scalar quantities such as speed have a size but are missing something else. A guided discussion period then challenges them to consider what that missing element might be, and this leads into the completion of the scalar definition. The next task then challenges the students to use this completed definition to write a similar one for a vector quantity. They will learn that velocity is a vector due to its magnitude and specific direction and then a series of exam questions are used to challenge their current understanding in terms of changes in speed and velocity at a crossroads. The mark scheme for each of the questions is embedded into the PowerPoint. The remainder of the lesson uses another competition to introduce acceleration, momentum, energy, force, mass and weight as scalar or vector quantities and the students are challenged one final time as they have to explain why weight is an example of a vector quantity.
Stopping distances
GJHeducationGJHeducation

Stopping distances

(0)
A fully-resourced lesson that looks at the meaning of thinking, braking and stopping distances and focuses on the factors that would cause each of them to increase. The lesson includes an engaging lesson presentation (45 slides) and an associated worksheet for the calculations. The lesson begins by introducing the term stopping distance and then challenging students to recognise that both the distance travelled during the driver’s reaction time and under the braking force will contribute to this. Students are constantly challenged to think about the factors that would cause either the thinking or braking distance to increase and to be able to explain why scientifically. Moving forwards, the mathematical element that is associated with this topic is explored as students are shown how to calculate the braking distance at different speeds as well as convert between speeds in miles per hour and metres per second. There is also a set homework included as part of the lesson. There are regular progress checks written into the lesson so that students can assess their understanding. This lesson has been written for GCSE students but could be used with those at KS3.
Series and Parallel circuits
GJHeducationGJHeducation

Series and Parallel circuits

(0)
A fully-resourced lesson that explores how resistance, current and potential difference differ between series and parallel circuits. This knowledge needs to be sound in order for students to be able to carry out circuit calculations. The lesson includes a practical and task-based lesson presentation (24 slides) and an accompanying worksheet. The lesson begins by challenging the students to recognise the key difference between the two circuits, in that in a parallel circuits, the electrons can follow more than one route. Moving forwards, each physical factor is investigated in each type of circuits and students carry out tasks or calculations to back up any theory given. Helpful analogies and hints are provided to guide the students through this topic which is sometimes poorly understood. Students will be challenged to use the V = IR equation on a number of occasions so that they are comfortable to find out any of these three factors. Progress checks have been written into the lesson at regular intervals so that students are constantly assessing their understanding and any misconceptions can be addressed. This has been written for GCSE students, but could be potentially used with higher ability KS3 students.
KINETIC ENERGY
GJHeducationGJHeducation

KINETIC ENERGY

(0)
A fully-resourced lesson which focuses on using the kinetic energy equation to calculate energy, mass and speed. The lesson includes a lesson presentation (23 slides) which guides students through the range of calculations and accompanying worksheets which are differentiated. The lesson begins with the students being drip fed the equation so they are clear on the different factors involved. They are challenged to predict whether increasing the mass or increasing the speed will have a greater effect on the kinetic energy before testing their mathematical skills to get results to support their prediction. Moving forwards, students are shown how to rearrange the equation to make the mass the subject of the formula so they can use their skills when asked to calculate the speed. The final task of the lesson brings all of the learning together to tackle a set of questions of increasing difficulty. These questions have been differentiated so that students who need extra assistance can still access the learning. This lesson has been written for GCSE students
Equations of motion
GJHeducationGJHeducation

Equations of motion

(0)
A concise lesson presentation (22 slides) and question worksheet, which together focus on the challenge of applying the equations of motion to calculation questions. Students are given this equation on the data sheet in the exam - therefore, this lesson shows them how they will be expected to rearrange in it four ways. For this reason, the start of the lesson revisits the skills involved in rearranging the formula, beginning with simple tasks and building up to those that involve indices as are found in this equation. Once students have practised these skills, they are challenged to answer 4 questions, although 1 is done together with the class to visualise how to set out the working. This lesson has been designed for GCSE students
Converting units (Maths in Science)
GJHeducationGJHeducation

Converting units (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (34 slides) and differentiated worksheets that show students how to convert between units so they are confident to carry out these conversions when required in Science questions. The conversions which are regularly seen at GCSE are covered as well as some more obscure ones which students have to be aware of. A number of quiz competitions are used throughout the lesson to maintain motivation and to allow the students to check their progress in an engaging way This lesson has been designed for GCSE students but is suitable for KS3
Edexcel GCSE Physics Topic 8 REVISION (Energy-forces doing work)
GJHeducationGJHeducation

Edexcel GCSE Physics Topic 8 REVISION (Energy-forces doing work)

(0)
This revision lesson has been filled with activities that will challenge the students on their knowledge and understanding of the content detailed in topic 8 (Energy - forces doing work) of the Pearson Edexcel GCSE Physics specification. The wide range of activities in the engaging PowerPoint and accompanying resources will check on the knowledge of this topic and allow the students to recognise those areas which need further attention before the mock or terminal GCSE exams. This resource has been designed to cover as much of topic 8 as possible but the following points have received particular attention: Describe how to measure the work done by a force Understand that work done is equal to energy transferred Recall and use the equation to calculate work done Calculate the changes in energy involved when a system is changed by work done by forces Recall and use the equation to calculate gravitational potential energy Recall and use the equation to calculate kinetic energy Explain how energy is dissipated so that it is stored in less useful ways Define power as the rate at which energy is transferred and that 1 watt is equal to one joule per second Recall and use the equation to calculate power Recall and use the equation to calculate efficiency The mathematical content of this specification and this topic is heavy and in line with this lots of calculated-based tasks are included and all of the answers are explained in steps so students can assess their progress The main task of the lesson which challenges students to use the principle of moments has been differentiated so that differing abilities can access the work
Edexcel GCSE Physics PAPER 1 REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Physics PAPER 1 REVISION LESSONS

6 Resources
All of the lessons in this bundle are fully-resourced and have been designed to challenge the students on their knowledge of the topics which can be assessed in PAPER 1 of the Pearson Edexcel GCSE Physics specification. All 7 topics that can be assessed in paper 1 are covered by these lessons: Topic 1: Key concepts in Physics Topic 2: Motion and forces Topic 3: Conservation of energy Topic 4: Waves Topic 5: Light and the EM spectrum Topic 6: Radioactivity Topic 7: Astronomy The PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clear explanations of the answer, differentiated tasks and quiz competitions. There is also a big emphasis on the mathematical element of the specification and students are guided through the use of a range of skills which include the conversion of units and the rearrange of formulae to change the subject. If you would like to see the quality of the lessons, download the topics 4 & 5 and 7 lessons which have been shared for free
AQA GCSE Physics Topic 2 REVISION (Electricity)
GJHeducationGJHeducation

AQA GCSE Physics Topic 2 REVISION (Electricity)

(0)
This is an engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 2 (Electricity) of the AQA GCSE Physics (8463) specification. The specification points that are covered in this revision lesson include: Standard circuit diagram symbols Current, resistance and potential difference Resistors Series and parallel circuits Direct and alternating potential difference Mains electricity Power Static charge The students will thoroughly enjoy the range of activities, which include quiz competitions such as “GRAFT over these GRAPHS” where they have to compete to be the 1st to recognise one of the graphs associated with the resistors whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
AQA GCSE Combined Science Unit P4 (Atomic Structure) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science Unit P4 (Atomic Structure) REVISION

(0)
An engaging lesson presentation (48 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P4 (Atomic structure) of the AQA GCSE Combined Science specification (specification point P6.4). The topics that are tested within the lesson include: The structure of an atom Isotopes Radioactive decay and nuclear radiation Nuclear equations Half-lives Students will be engaged through the numerous activities including quiz rounds like “It’s as easy as ABG” and “ALPHA or BETA” whilst crucially being able to recognise those areas which need further attention
PAPERS 1 - 6 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

PAPERS 1 - 6 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)

6 Resources
This bundle of 6 revision lessons challenges the students on their knowledge of the content of all of the topics that are detailed in the Edexcel GCSE Combined Science specification and can be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics. The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content. If you would like to see the quality of these lessons, download the paper 2, 4 and 6 revision lessons as these have been shared for free
PAPER 5 REVISION FT (Edexcel Combined Science FOUNDATION TIER)
GJHeducationGJHeducation

PAPER 5 REVISION FT (Edexcel Combined Science FOUNDATION TIER)

(0)
This is a fully-resourced lesson which uses exam-style questions, engaging quiz competitions, quick tasks and discussion points to challenge students on their understanding of the content of topics P1 - P6, that will assessed on PAPER 5. It has been specifically designed for students on the Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many specification points as possible but the following sub-topics have been given particular attention: Factors affecting thinking and braking distance The 7 recall and apply equations tested in PAPER 5 The units associated with the physical factors challenged in PAPER 5 Recognising the motions represented by different motions on velocity-time graphs Using a velocity-time graph to calculate acceleration Resultant forces Sound waves as longitudinal waves The electromagnetic waves Using significant figures and standard form The relative charges and masses of the particles in an atom Recognising isotopes Using the half-life of radioactive isotopes The development of the atomic model In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been incorporated into the lesson to walk through students through some of the more difficult concepts such as half-life calculations. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 5 exam.
Specific heat capacity
GJHeducationGJHeducation

Specific heat capacity

(13)
A detailed lesson presentation (25 slides) that introduces students to the difficult topic of specific heat capacity. Students are guided through the equation for energy transferred and shown how to rearrange the equation, so they are able to tackle the question, no matter the subject of the question. There are regular opportunities for students to apply their new found knowledge to questions and to assess themselves against the answers. Quick games and competitions are also used to maintain engagement. If you choose to download this lesson, it would be much appreciated if you would take just a few seconds to write a review so I can improve my practice and other teachers can see if this resource is right for them. Thank you in advance.
Rearranging the formula (Maths in Science)
GJHeducationGJHeducation

Rearranging the formula (Maths in Science)

(0)
An informative lesson presentation (37 slides) and accompanying worksheets that guides students through the different methods that can be used to rearrange formulae as they will be required to do in the Science exams. The lessons shows them how to use traditional Maths methods involving inverse operations and also equation triangles to come to the same result. These are constantly linked to actual examples and questions to show them how this has to be applied. There are regular progress checks, with explained answers, so that students can assess their understanding.
Alpha, beta and gamma radiation
GJHeducationGJHeducation

Alpha, beta and gamma radiation

(0)
An informative lesson presentation (37 slides) and associated question worksheet which looks at the key properties of alpha, beta and gamma radiation. Students are given key pieces of information during the lesson and are then challenged to use their knowledge of related topics such as atomic structure and waves to complete the information table about the types of radiation. By the end of the lesson, students will be able to compare the types of radiation on form, charge, relative mass, penetrating power and equation symbols. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK).
AQA GCSE Combined Science Topic P3 (Particle model of matter) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science Topic P3 (Particle model of matter) REVISION

(0)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P3 (Particle model of matter) of the AQA Trilogy GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Density of materials Changes of state Temperature changes in a system and specific heat capacity Changes of heat and specific latent heat Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
WJEC GCSE Physics Topic 2.1 REVISION (Distance, speed and acceleration)
GJHeducationGJHeducation

WJEC GCSE Physics Topic 2.1 REVISION (Distance, speed and acceleration)

(0)
This lesson has been written to act as a revision tool for students at the completion of topic 2.1 of the WJEC GCSE Physics specification or in the lead up to mock or terminal exams. The engaging PowerPoint and accompanying resources have been designed to include a wide range of activities to allow the students to assess their understanding and to recognise any areas which need extra attention. This specification is heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units. The following specification points have received a particular focus in this lesson: Motion using speed, velocity and acceleration Speed-time graphs Application of the equations to calculate speed and acceleration Using velocity-time graphs to calculate uniform acceleration and distance travelled Knowledge of the terms reaction time, thinking distance, braking distance and stopping distance The factors which affect these distances A number of quick quiz rounds, such as THE WHOLE DISTANCE, are used to maintain engagement and motivation and to challenge the students on their recall of important points.
Diodes
GJHeducationGJHeducation

Diodes

(0)
A concise lesson presentation that focuses on the key details that students need to know about diodes for the GCSE examinations. The lesson begins by introducing the idea that diodes only allow current to flow in one direction. Moving forwards, time is taken to go through the potential difference vs current graph in 3 parts so that students can explain how the diode functions. Moving forwards, students will meet a LED and then in the style commonly associated with the 6 mark exam question, they are challenged to use data in a table to compare the effectiveness of a LED against other light bulbs.