Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Ionic bonds & compounds (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Ionic bonds & compounds (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson explains how ionic bonds are formed to form ions and describes the structure of an ionic compound. The engaging lesson PowerPoint and accompanying resources have been designed to cover points 1.21 and 1.27 of the Edexcel GCSE Chemistry specification and this also covers those points on the Combined Science specification. The lesson begins by introducing the name of the type of bond, but does not go into any more detail at this stage. This is because the lesson is designed to allow the students to discover that in order for both of the atoms involved to get a full outer shell, electrons have to be transferred from one to the other. Over the course of the lesson, students will recognise that it is the metal that loses the electrons and becomes a positive ion whilst the non-metal gains the electrons and becomes a negative ion. There are lots of discussion and discovery points like this written into the lesson so that students can take ownership for their learning. Students are guided through drawing dot and cross diagrams to represent these compounds and as a result links are made to the topics of naming compounds, writing chemical formulae, forming ions and electron configurations. There are a number of quick competitions in the lesson which introduce new terms to the students. One such competition introduces the term lattice and the lesson builds from here to understand why ionic compounds have high melting and boiling points. Moving forwards, students will also learn that solid ionic compounds cannot conduct electricity whilst those in molten form or in an aqueous solution are able to. The final task of the lesson challenges the students to bring all of the information together they have seen to draw a dot and cross diagram for aluminium oxide, explain how it was formed and then explain how aluminium is extracted from this compound by electrolysis. This final task has been differentiated so that students who need extra assistance can still access the learning. This lesson has been written for GCSE aged students but could be used with higher ability younger students who are pushing on with the elements, compounds and mixtures topic
Xylem & phloem: Structure and function (CIE International A-level Biology)
GJHeducationGJHeducation

Xylem & phloem: Structure and function (CIE International A-level Biology)

(0)
This lesson describes how the structures of the xylem vessel elements, phloem sieve tube elements and companion cells relates to their functions. Both the engaging and detailed PowerPoint and accompanying resources have been designed to cover point 7.1 (d) of the CIE International A-level Biology specification. The lessons begins by challenging the students to identify the substances that a plant needs for the cellular reactions, where they are absorbed and where these reactions occur in a plant. The aim of this task is to get the students to recognise that water and mineral ions are absorbed in the roots and needed in the leaves whilst the products of photosynthesis are in the leaves and need to be used all over the plant. Students will be reminded that the xylem and phloem are the vascular tissues responsible for transporting these substances and then the rest of the lesson focuses on linking structure to function. A range of tasks which include discussion points, exam-style questions and quick quiz rounds are used to describe how lignification results in the xylem as a hollow tube of xylem cells to allow water to move as a complete column. They will also learn that the narrow diameter of this vessel allows capillary action to move water molecules up the sides of the vessel. The same process is used to enable students to understand how the structures of the companion cells allows assimilates to be loaded before being moved to the sieve tube elements through the plasmodesmata. It is estimated that it will take around 2 hours of A-level teaching time to cover the detail which has been written into this lesson.
Alveolar epithelium (AQA A-level Biology)
GJHeducationGJHeducation

Alveolar epithelium (AQA A-level Biology)

(0)
This concise lesson describes the essential features of the alveolar epithelium as a surface over which gas exchange takes place. The engaging PowerPoint has been designed to cover the fourth part of point 3.2 of the AQA A-level Biology specification and also includes an introduction to ventilation which is covered in the following lesson. Gas exchange at the alveoli is a topic that was covered at GCSE so this lesson has been written to challenge the recall of that knowledge and to build on it. The main focus of the lesson is the type of epithelium found lining the alveoli and students will discover that a single layer of flattened cells known as simple, squamous epithelium acts to reduce the diffusion distance. Again, students will have met this in a lesson in topic 2 on specialised cells (and tissues) so a number of prior knowledge checks are used alongside current understanding checks. The following features of the alveolar epithelium are also covered: Surface area Moist lining Production of surfactant The maintenance of a steep concentration gradient As a constant ventilation supply is critical for the maintenance of the steep concentration gradient, the final part of the lesson considers the mechanism of ventilation to prepare the students for the next lesson.
Investigating the distribution and abundance of organisms (OCR GCSE Biology)
GJHeducationGJHeducation

Investigating the distribution and abundance of organisms (OCR GCSE Biology)

(0)
This lesson describes how to investigate the distribution and abundance of organisms and how to estimate the numbers of a species in a habitat. The PowerPoint and accompanying resources are part of the first lesson in a series of two lessons which have been designed to cover the details of point B6.1a of the OCR GCSE Biology specification. This first lesson focuses on the use of a quadrat to estimate population size as well as belt transects to consider distribution. Step by step guides are used throughout the lesson to model the workings required in the calculations. This includes the use of a 1 metre squared quadrat as well as other areas. Once a method has been modelled, the students are challenged with a series of exam questions and mark schemes are embedded into the PowerPoint to allow the students to self-assess.
Transmission of infectious diseases (CIE A-level Biology)
GJHeducationGJHeducation

Transmission of infectious diseases (CIE A-level Biology)

(0)
This lesson describes how cholera, measles, malaria, TB and HIV are transmitted from an infected individual to an uninfected individual. The PowerPoint and accompanying worksheet have been primarily designed to cover point 10.1 [c] of the CIE A-level Biology specification but intricate planning ensures that the students are constantly challenged on their recall of the content of the previous lesson where the names and types of pathogens that caused these diseases was covered. The lesson contains a wide range of tasks which will engage the students whilst challenging them to think about the biological content. Relevant examples such as the UK government’s public message of “HANDS, FACE, SPACE” are used to explain how measles, TB and HIV are directly transmitted through droplet infection or the exchange of bodily fluids. A series of exam-style questions challenge the students on their knowledge of the transmission of HIV and the mark scheme is embedded into the PowerPoint to allow them to assess their progress. The rest of the lesson focuses on the transmission of cholera and malaria in unsafe water and through a vector respectively. Again, the students are challenged to recall the name and type of pathogen that is the causative organism before details of the spread are discussed and described.
Using ECGs (Edexcel A-level Biology)
GJHeducationGJHeducation

Using ECGs (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the use of electrocardiograms to aid the diagnosis of CVD and other heart conditions. The engaging PowerPoint and accompanying resources have been designed to cover point 7.8 (iii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also make continual links to earlier specification points like 1.4 and 1.5 where heart topics were previously covered. The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem. This lesson has been designed to tie in with the lesson that covers the previous specification point on the normal electrical activity of the heart and the myogenic nature of cardiac muscle
Calculating cardiac output (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Calculating cardiac output (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the meaning of the terms stroke volume and heart rate and explains how to use them to calculate the cardiac output. The PowerPoint and accompanying resources have been designed to cover the content of specification point 8.12 of the Edexcel GCSE Biology & Combined Science specifications. The lesson begins by challenging the students to use their knowledge of the structure of the heart chambers to identify the one which has the most muscular wall. Their discussions should lead to the left ventricle and following the introduction of the key term stroke volume using a quick quiz competition, they will learn that this factor is the volume of blood pumped out of the left ventricle each heart beat. Another competition introduces the normative values for stroke volume and the resting heart rate and then the students are challenged to use the provided equation to calculate the cardiac output and to write a definition for this factor using their current understanding. The remainder of the lesson considers how these three factors change during exercise and they are challenged to apply their understanding through a series of exam questions. This worksheet is differentiated two ways and the mark scheme is embedded into the PowerPoint to allow the students to assess their progress.
Classification, species and the binomial naming system (WJEC A-level Biology)
GJHeducationGJHeducation

Classification, species and the binomial naming system (WJEC A-level Biology)

(0)
This lesson describes the classification system, focusing on the biological classification of a species and the 7 taxa found above this lowest taxon. The engaging PowerPoint and accompanying resource have been designed to cover points (a), (b), (f) & (g) in AS unit 2, topic 1 of the WJEC A-level Biology specification and also describes the binomial naming system which uses the genus and species. The lesson also contains links to upcoming lessons where the three-domain classification system and the characteristics of the five kingdoms are covered. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Moving forwards, students will learn that classification is a means of organising the variety of life based on relationships between organisms using differences and similarities in phenotypes and in genotypes and is built around the species concept and that in the modern-day classification hierarchy, species is the lowest taxon. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn (or recall) the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.
Assessing biodiversity (Edexcel A level Biology B)
GJHeducationGJHeducation

Assessing biodiversity (Edexcel A level Biology B)

(0)
This fully-resourced lesson describes how biodiversity can be assessed within a habitat at a species level and within a species at a genetic level. The engaging PowerPoint and accompanying resources have been primarily designed to cover point 3.3 (i) of the Edexcel A-level Biology B specification but as a lot of genetic content is covered when considering diversity within a species, this lesson can be used as an introduction to topic 8 material… A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz introduces species, population, biodiversity, allele, recessive and dominant and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to assess the biodiversity within a habitat and within a species. The variety of alleles in the gene pool of a population increases the genetic diversity so a number of examples are used to demonstrate how the number of phenotypes increases with the number of alleles at a locus. The CFTR gene is used to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups. The rest of the lesson uses a step by step guide to complete a worked example to calculate an index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise.
Transmission of animal and plant pathogens (OCR A-level Biology A)
GJHeducationGJHeducation

Transmission of animal and plant pathogens (OCR A-level Biology A)

(0)
This lesson describes the means of transmission of animal and plant communicable pathogens, including direct and indirect transmission. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (b) of the OCR A-level Biology A specification but intricate planning ensures that the students are constantly challenged on their recall of the content of the previous lesson, where the different types of pathogens that cause communicable diseases in plants and animals was covered. The lesson contains a wide range of tasks which will engage the students whilst challenging them to think about the biological content. Relevant examples such as the UK government’s public message of “HANDS, FACE, SPACE” are used to explain how TB and HIV are directly transmitted through droplet infection or the exchange of bodily fluids. A series of exam-style questions challenge the students on their knowledge of the transmission of HIV and the mark scheme is embedded into the PowerPoint to allow them to assess their progress. Students will learn that although HIV is mainly a sexually transmitted infection, the sharing of needles by intravenous drug users and vertical transmission from a mother to foetus (or baby) are other mechanisms for the spread. Moving forwards, the next part of the lesson focuses on the transmission of cholera and malaria in unsafe water and through a vector respectively. Time is taken to emphasise the meaning of a vector and student understanding is checked later in the lesson when discussing the spread of the fungus responsible for Dutch elm disease by the elm beetle. The effect of climate and social factors are also considered, and the outbreak of cholera in Yemen in 2016 is used to introduce a number of the social determinants that affect transmission. The final part of the lesson describes the direct and indirect means of transmission of plant pathogens and biological examples are sourced to increase the relevance.
mRNA modification (OCR A-level Biology)
GJHeducationGJHeducation

mRNA modification (OCR A-level Biology)

(0)
This fully-resourced lesson describes the control of gene expression at a post-transcriptional level through the removal of introns during splicing. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification and also explains how it’s possible for 1 gene to give rise to multiple products as a result of this post-transcriptional modification of mRNA. The lesson begins with a knowledge recall as the students have to recognise the definition of a gene as a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain. This description was introduced in module 2.1.3 and the aim of the start of the lesson is to introduce the fact that despite this definition, most of the nuclear DNA in eukaryotes doesn’t actually code for proteins. A quick quiz competition is then used to introduce exons as the coding regions within a gene before students are challenged to predict the name of the non-coding regions and then to suggest a function for these introns. At this point, the students will complete a task that acts as a prior knowledge check where they have to identify the 6 errors in the descriptive passage about the lac operon and its role in the regulation of gene expression in prokaryotes. Moving forwards, pre-mRNA as a primary transcript is introduced and students will learn that this isn’t the mature strand that moves off to the ribosome for translation. Instead, a process called splicing takes place where the introns are removed and the remaining exons are joined together. Another quick quiz round leads to an answer of 20000 and students will learn that this is the number of protein-coding genes in the human genome. Importantly, the students are then told that the number of proteins that are synthesised is much higher than this value and a period of class discussion encourages them to come up with biological suggestions for this discrepancy between the two numbers. The lesson concludes with a series of understanding and application questions where students will learn that alternative splicing enables a gene to produce more than a single protein and that this natural phenomenon greatly increases biodiversity
Meiosis (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Meiosis (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes the role of meiotic cell division, including a detailed explanation of how 4 genetically unidentical daughter cells are formed. The PowerPoint and accompanying resources have been designed to cover point 3.3 of the Edexcel GCSE Biology and Combined Science specifications. The students covered the mitotic cell cycle in topic 2 and their knowledge of this type of cell division is utilised throughout the lesson to help with the understanding of this cycle. The lesson begins by challenging the students to recall the meaning of diploid and they will learn that the parent cell at the start of the meiotic cell cycle is a diploid cell. Time is taken to remind them of the events of interphase and then the lessons focuses on the 2 sets of division in meiosis which produces four haploid daughter cells. The identity of these cells as gametes is emphasised. The final part of the lesson uses a series of exam questions to challenge the students on their understanding of the cycle and the mark schemes are embedded into the PowerPoint to allow the students to assess their progress.
Genetic inheritance (AQA GCSE Biology)
GJHeducationGJHeducation

Genetic inheritance (AQA GCSE Biology)

(0)
This lesson explains the meaning of 11 key terms associated with the genetic inheritance topic and challenges the students to use them in context. The PowerPoint and accompanying resources have been designed to cover point 6.1.6 of the AQA GCSE Biology specification and include explanations of genome, chromosome, gene, allele, genotype, homozygous, heterozygous, phenotype, dominant, recessive and gamete. The key term, genome, was met earlier in topic 6 so the lesson begins with a knowledge retrieval with the definition for this term. As the genome is the entire DNA of an organism, the next task challenges the students to identify three errors in a passage about DNA. This leads into discussions about chromosomes and genes and time is taken to explain that homologous chromosomes have the same genes at the exact same gene loci. The students will learn that alternative forms of the gene (alleles) can be found at these loci and that these structures explain the differences in inherited characteristics. Moving forwards, the main section of the lesson describes the link between the dominant and recessive alleles, homozygous and heterozygous genotypes, and the physical expression as the phenotype. The final key term is gamete, and the students are challenged to recognise a definition for this term using their knowledge of meiosis. Two progress and understanding checks complete the lesson and check on the students’ ability to recognise and write definitions for these 11 terms and to use them accurately in a written description
Sliding filament theory (Edexcel A-level PE)
GJHeducationGJHeducation

Sliding filament theory (Edexcel A-level PE)

(0)
This fully-resourced lesson builds on the previous lesson where the structure of a muscle fibre was introduced and explains how muscle contracts according to the sliding filament theory. Both the PowerPoint and accompanying resources have been designed to cover the 3rd part of points 1.3.5 & 1.3.6 of the Edexcel A-level PE specification. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding checks will allow them to assess their progress. The lesson begins by getting them to reveal the prefix myo so that they can recognise that myology is the study of muscles. This leads into the next task, where they have to identify two further terms beginning with myo and are the names of structures involved in the arrangement of skeletal muscle. Key terminology is used throughout the lesson so that students feel comfortable when they encounter this in questions. Students were introduced to the sarcomere and the bands and zones that are found within a myofibril in a previous lesson and they are challenged to discuss how the sarcomere can narrow but the lengths of the myofilaments remain the same. The main task of the lesson involves the formation of a bullet point description of the sliding filament model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of calcium ions and ATP. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly.
Structure of DNA (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of DNA (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the structure of the DNA, including the structure of the nucleotides and the bonds that form the backbone and double helix. Both the engaging PowerPoint and accompanying resources have been designed to cover specification point 1.4 (i) as detailed in the Edexcel A-level Biology B specification. As students will already have some knowledge of this nucleic acid from GCSE, the lesson has been written to build on this prior knowledge and then to add key detail. Students need to have a clear understanding of the structure of a nucleotide for this topic as well as upcoming lessons on RNA and ATP, so the start of the lesson focuses on these monomers and the three components. Time is taken to look at the bases and students will be introduced to purines and pyrimidines and are reminded of the bonds that form between the complementary base pairs. A series of exam-style questions checks on their current understanding and mark schemes are displayed to enable the students to assess their understanding and to address any misconceptions should they arise. Phosphodiester bonds are also introduced before a quick quiz competition is used to introduce the numbers 5 and 3 so that the directionality of the DNA strand can be explained.
Glycogen, amylose and amylopectin (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Glycogen, amylose and amylopectin (Edexcel Int. A-level Biology)

(0)
This detailed and fully-resourced lesson describes the relationship between the structure and function of glycogen and amylose and amylopectin as components of starch. The engaging PowerPoint and accompanying resources have been designed to cover the fourth part of points 1.2 & 1.4 of the Edexcel International A-level Biology specification and links are continuously made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. The lesson begins with the CARBOHYDRATE WALL where students have to use their prior knowledge to collect the 9 carbohydrates on show into 3 groups. This results in glycogen, starch and cellulose being grouped together as polysaccharides and the structure and roles of the first two are covered over the course of the lesson. Cellulose is covered in a lesson in topic 4. Students will learn how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also allows for spiralling. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses and they learn more about starch. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. The importance of the compact structure for storage is discussed as well as the branched chains of amylopectin acting as quick source of energy when it is needed. The lesson concludes with a question and answer section that guides the students when answering a question about the importance of the lower solubility of the polysaccharides when compared to the monosaccharides.
OCR A-level Biology GENETIC TERMINOLOGY
GJHeducationGJHeducation

OCR A-level Biology GENETIC TERMINOLOGY

(0)
This lesson acts as an introduction to part b of module 6.1.2 of the OCR A-level Biology A specification and focuses on 16 key genetic terms. In this module, students are expected to be able to demonstrate and apply their knowledge and understanding of genetic diagrams and phenotypic ratios to show patterns of inheritance and this is only possible with a clear understanding of the genetic terminology that will be used in related exam questions. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous
Monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology B)
GJHeducationGJHeducation

Monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology B)

(0)
This detailed lesson describes the differences between monosaccharides, disaccharides and polysaccharides. The PowerPoint and accompanying resource have been designed to cover point 1.1 (i) that’s detailed in the Edexcel A-level Biology B specification and the aim of this lesson is to provide the students with key details to prepare them for the upcoming lessons on the carbohydrate groups. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen and starch are introduced as well as amylose and amylopectin as components of this latter polymer. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.
Double circulatory system (Edexcel A-level Biology B)
GJHeducationGJHeducation

Double circulatory system (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the advantages of the double circulatory system that is found in mammals. The engaging PowerPoint and accompanying resources have been designed to cover point 4.4 (ii) of the Edexcel A-level Biology B specification and focuses on the differences in pressure between the pulmonary and systemic circulation. The lesson begins with a focus on the meaning of a double circulatory system and checks that students are clear in the understanding that the blood passes through the heart twice per cycle of the body. Beginning with the pulmonary circulation, students will recall that the pulmonary artery carries the blood from the right ventricle to the lungs. An opportunity is taken at this point to check on their knowledge of inhalation and the respiratory system as well as the gas exchange between the alveoli and the capillary bed. A quick quiz is used to introduce arterioles and students will learn that these blood vessels play a crucial role in the changes in blood pressure that prevent the capillaries from damage. When looking at the systemic circulation, time is taken to look at the coronary arteries and renal artery as students have to be aware of these vessels in addition to the ones associated with the heart. In the final part of the lesson, students are challenged to explain how the structure of the heart generates a higher pressure in the systemic circulation and then to explain why the differing pressures are necessary.
Structure of prokaryotic cells (WJEC A-level Biology)
GJHeducationGJHeducation

Structure of prokaryotic cells (WJEC A-level Biology)

(0)
This lesson describes the structure of a prokaryotic cell including the nucleoid, plasmid, 70S ribosomes and cell wall. The engaging PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons which have been designed to cover the details in specification point (b) in AS unit 1, topic 2 of the WJEC A-level Biology specification. This lesson has been specifically designed to be taught after the lesson on the structure of eukaryotic cells, specification point (a), so that comparisons can be drawn. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to come up with a 3-letter prefix that they believe will translate as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus which acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce so that students can recognise that prokaryotic cells do not contain centrioles