Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Limiting reactants and stoichiometry
GJHeducationGJHeducation

Limiting reactants and stoichiometry

(0)
This is a fully-resourced lesson that looks at the meaning of a limiting reactant in a chemical reaction and guides students through how to apply this to a number of calculations. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work. The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Catalysts and the rate of reaction
GJHeducationGJHeducation

Catalysts and the rate of reaction

(0)
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson. This lesson has been designed for GCSE students.
Gene linkage (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Gene linkage (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson is clear and concise and has been written to explain how the inheritance of two or more genes that have loci on the same chromosome demonstrates linkage. The engaging PowerPoint and associated resource have been designed to cover point 3.8 (i and ii) of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should know the meaning of a gene locus and understand the linkage of genes on a chromosome. This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be.
Respiration produces ATP (AQA A-level Biology)
GJHeducationGJHeducation

Respiration produces ATP (AQA A-level Biology)

(0)
This lesson describes how respiration produces ATP by substrate-level and oxidative phosphorylation. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 7 lessons which have been designed to cover the detailed content of point 5.2 (RESPIRATION) of the AQA A-level Biology specification. As the first lesson in this sub-topic, it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Students met phosphorylation in topic 5.1 when considering the light-dependent reactions of photosynthesis and their knowledge of the production of ATP in this plant cell reaction is called on a lot in this lesson to show the similarities. The students are also tested on their recall of the structure and function of ATP, as covered in topic 1.6, through a spot the errors task. By the end of the lesson, the students will be able to name and describe the different types of phosphorylation and will know that ATP is produced by substrate-level phosphorylation in glycolysis and the Krebs cycle and by oxidative phosphorylation in the final stage of aerobic respiration with the same name.
Fractional distillation of crude oil
GJHeducationGJHeducation

Fractional distillation of crude oil

(0)
An engaging lesson presentation (46 slides) which looks at the fractional distillation of crude oil and focuses on the properties of the different fractions. The aim at the start of the lesson is to ensure that students understand that this process can be broken down into evaporation followed by condensation. Moving forwards, a fun competition is used to introduce the students to the names of some of the important fractions that are produced by this process. At the same time, they will learn the relative position that each fraction condenses on the fractionating column and will be taught that they need to know this position with relation to the other fractions. Students will learn that the fractions have differing properties depending on where they condense and they are challenged to compare fractions by viscosity, length of hydrocarbon and boiling point. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students.
Link reaction (AQA A-level Biology)
GJHeducationGJHeducation

Link reaction (AQA A-level Biology)

(0)
This clear and concise lesson looks at the role of the Link reaction in the conversion of pyruvate to acetyl coenzyme A which will then enter the Krebs cycle. The PowerPoint has been designed to cover the fourth part of point 5.2 of the AQA A-level Biology specification which states that students should know about this conversion and the production of reduced NAD The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.
Respiratory substrates (AQA A-level Biology)
GJHeducationGJHeducation

Respiratory substrates (AQA A-level Biology)

(0)
This fully-resourced lesson explores how other respiratory substrates, such as lipids and proteins, can be used to produce molecules of ATP. The PowerPoint and accompanying resources have been designed to cover the 7th and final part of point 5.2 of the AQA A-level Biology specification which states that students should know how these substrates enter the Krebs cycle. This lesson has been written to challenge the knowledge of the earlier parts of the topic of respiration and so contains constant prior knowledge checks which come in a range of forms. Students will learn that lipids and proteins can be used as respiratory substrates and will recognise the different ways that they enter the respiratory pathway. Time is taken to look at the beta oxidation pathway and again students are challenged to compare the products of this pathway against that of the Link reaction.
Krebs cycle (AQA A-level Biology)
GJHeducationGJHeducation

Krebs cycle (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the series of oxidation-reduction reactions that form the Krebs cycle and focuses on the products in terms of reduced NAD, FAD and ATP. The engaging PowerPoint and accompanying resource have both been designed to cover the fifth part of point 5.2 of the AQA A-level Biology specification. The lesson begins with a version of the Impossible game where students have to spot the connection between 8 of the 9 terms and will ultimately learn that this next stage is called the Krebs cycle. The main part of the lesson challenges the students to use descriptions of the main steps of the cycle to continue their diagram of the reactions. Students are continually exposed to key terminology such as decarboxylation and dehydrogenation and they will learn where carbon dioxide is lost and reduced NAD and FAD are generated. They will also recognise that ATP is synthesised by substrate level phosphorylation. The final task challenges them to apply their knowledge of the cycle to work out the numbers of the different products and to calculate the number of ATP that must be produced in the next stage This lesson has been designed to tie in with the other uploaded lessons on glycolysis, anaerobic respiration, the Link reaction and oxidative phosphorylation.
Concentration and the rate of reaction
GJHeducationGJHeducation

Concentration and the rate of reaction

(0)
A fully-resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes a practical-based lesson presentation (19 slides) and associated worksheets containing differentiated questions. The aim of the beginning of the lesson involves getting students to understand the term, concentration, so that they are able to use it accurately in their descriptions. This is a term which is commonly wrongly used by students. Moving forwards, students will carry out a practical to collect valid results so that they can apply their knowledge of concentration to explain a trend. Certain practical skills are challenged during the lesson such as the drawing of a results table to display the results. A worksheet containing questions on the practical is differentiated so that students who need assistance are still able to access the learning. This lesson has been designed for GCSE students but can be used with KS3 students who are learning about chemical reactions.
OCR A-Level Biology Module 3.1.3 (Transport in Plants) REVISION
GJHeducationGJHeducation

OCR A-Level Biology Module 3.1.3 (Transport in Plants) REVISION

(0)
A fun and engaging lesson presentation (90 slides) and associated worksheets that uses exam questions, quick tasks and quiz competitions to allow students to assess their understanding of the topic of transport in plants, which is module 3.1.3 on the OCR A-Level Biology A specification. Competition rounds include “Keyword BINGO”, “Crack the Code” and “Make the Link” and students will enjoy being able to identify areas that require further attention. All exam questions have mark schemes. This lesson is designed for A-level students
AQA GCSE Physics Topic 7 REVISION (Magnetism and electromagnetism)
GJHeducationGJHeducation

AQA GCSE Physics Topic 7 REVISION (Magnetism and electromagnetism)

(0)
This is a fully-resourced REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Magnetism and electromagnetism) of the AQA GCSE Physics (8463) specification. The specification points that are covered in this revision lesson include: Poles of a magnet Electromagnetism Fleming’s left hand rule Electric motors Loudspeakers Transformers Of all of the Physics topics, this one tends to be one of the least well understood. Therefore, time has been taken to not only make this an engaging revision lesson but to go into detail on some of the topics which are commonly assessed in the exams. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
CIE IGCSE Biology Topic 10 REVISION (Diseases and immunity)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 10 REVISION (Diseases and immunity)

(0)
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been designed with the aim of motivating and engaging the students whilst they assess their understanding of the content found in topic 10 (Diseases and immunity) of the CIE IGCSE Biology specification for examination in June and November 2020 and 2021. This revision resource contains an engaging PowerPoint (37 slides) and associated worksheets, some of which have been differentiated to help and challenge differing abilities. The range of activities have been designed to cover as much of the Core and Supplement content as possible but the following sub-topics have been given particular attention: Pathogens as disease causing microorganisms that cause transmissible diseases when they are spread Pathogens can be spread through direct or indirect contact Vaccinations as a form of active immunity that leads to the production of memory cells Examples of passive immunity The human body’s defence systems to include the white blood cells Diabetes type I as an example of an autoimmune disease
Competitive & non-competitive inhibitors (AQA A-level Biology)
GJHeducationGJHeducation

Competitive & non-competitive inhibitors (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resource are the last in a series of 5 lessons which cover the content detailed in point 1.4.2 of the AQA A-level Biology specification and describes the effect of both competitive and non-competitive inhibitors. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this will get the students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Effect of temperature on enzyme activity (Edexcel A-level Biology A)
GJHeducationGJHeducation

Effect of temperature on enzyme activity (Edexcel A-level Biology A)

(0)
This lesson explains the effects of temperature on the rate of enzyme activity and includes examples in plants, animals and microorganisms. The PowerPoint and the accompanying resource have been designed to cover point 5.16 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and this lesson has been specifically planned to tie in with a lesson in topic 2 where the roles and mechanism of action of enzymes were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the former in the PCR is briefly described to prepare students for this lesson in topic 6. Moving forwards, the next part of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured.
Temperature and the rate of reaction
GJHeducationGJHeducation

Temperature and the rate of reaction

(0)
A practical based lesson presentation (26 slides) that investigates how increasing the temperature affects the rate of reaction and helps students to explain the trend in the results. Students can either carry out the reaction between sodium thiosulphate and hydrochloric acid or use the results which are provided. The equation to work out the rate of reaction is introduced to the students and they are challenged to plot the results on a line graph. A key term to be used in the explanation is introduced through a quick competition and then students are challenged to explain the trend
Conducting tissue of the heart (AQA A-level Biology)
GJHeducationGJHeducation

Conducting tissue of the heart (AQA A-level Biology)

(0)
This engaging lesson explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the transmission of the wave of excitation through the heart. The PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.3 of the AQA A-level Biology specification which states that students should be able to describe the myogenic stimulation of the heart and the subsequent wave of electrical activity. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 3. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
Edexcel GCSE Chemistry Topic 7 REVISION (Rates of reaction and energy changes)
GJHeducationGJHeducation

Edexcel GCSE Chemistry Topic 7 REVISION (Rates of reaction and energy changes)

(0)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Rates of reaction and energy changes) of the Edexcel GCSE Chemistry specification. The specification points that are covered in this revision lesson include: Suggest practical methods for determining the rate of a given reaction Explain how reactions occur when particles collide and that rates of reaction are increased when the frequency and/or energy of collisions is increased Explain the effects on rates of reaction of changes in temperature, concentration, surface area to volume ratio of a solid and pressure (on reactions involving gases) in terms of frequency and/or energy of collisions between particles Describe a catalyst as a substance that speeds up the rate of a reaction without altering the products of the reaction, being itself unchanged chemically and in mass at the end of the reaction Explain how the addition of a catalyst increases the rate of a reaction in terms of activation energy Describe an exothermic change or reaction as one in which heat energy is given out Describe an endothermic change or reaction as one in which heat energy is taken in Recall that the breaking of bonds is endothermic and the making of bonds is exothermic Recall that the overall heat energy change for a reaction is: a exothermic if more heat energy is released in forming bonds in the products than is required in breaking bonds in the reactants b endothermic if less heat energy is released in forming bonds in the products than is required in breaking bonds in the reactants Calculate the energy change in a reaction given the energies of bonds (in kJ mol–1) Explain the term activation energy Draw and label reaction profiles for endothermic and exothermic reactions, identifying activation energy The students will thoroughly enjoy the range of activities, which includes a quiz competition called “E NUMBERS” where they have to recognise the differences between endothermic and exothermic reactions whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
Transcription and Translation - GCSE
GJHeducationGJHeducation

Transcription and Translation - GCSE

(0)
This lesson looks at the two stages of protein synthesis, transcription and translation, and focuses on the key details that students need to understand this potentially difficult topic. The lesson presentation has been deliberately written in a concise way to encourage the students to summarise the two stages and pick out the key points which will enable them to form longer answers when necessary. The lesson begins by introducing the students to RNA, and a quick check is done to see how much they can recall about the other nucleic acid, DNA. Moving forwards, students are challenged to study the structure of DNA and RNA in SPOT THE DIFFERENCE before being challenged to explain why RNA is necessary in this process. Time is taken to look at important sections such as complimentary base pairing and the identification of amino acids from the codon. A number of quick competitions have been written into the lesson to maintain engagement and the progress checks are regular so that students assess their understanding and any misconceptions can be quickly identified and addressed. This lesson has been written for GCSE students but should a teacher want to teach an introduction lesson on protein synthesis before going into more detail at a later date, then this would be suitable.
ATP as the energy currency (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

ATP as the energy currency (Pearson Edexcel A-level Biology A)

(0)
This lesson describes how the hydrolysis of ATP supplies energy for biological processes and how the phosphorylation of ADP requires energy. The PowerPoint has been designed to cover point 5.6 of the Pearson Edexcel A-level Biology A specification and also describes how ATP is made in the light-dependent stage of photosynthesis and is needed in the light-independent stage. The start of the lesson focuses on the structure of this energy currency and challenges the students to use their knowledge of nucleotides and specifically RNA nucleotides to recognise the components of ATP. As a result, they will learn that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of skeletal muscle contraction are used as this is covered in greater detail in topic 7. The final part of the lesson considers how ATP is formed when ADP is phosphorylated and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively, so that it ties in with the upcoming lessons in topic 5 and 7.
Net primary productivity (Edexcel A-level Biology A)
GJHeducationGJHeducation

Net primary productivity (Edexcel A-level Biology A)

(0)
This lesson describes the relationship between gross and net primary productivity and plant respiration and explains how to calculate NPP. The PowerPoint and accompanying resources have been designed to cover points 5.10 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. Due to the fact that the productivity of plants is dependent on photosynthesis, a series of exam-style questions have been written into the lesson which challenge the students to explain how the structure of the leaf as well as the light-dependent and light-independent reactions are linked to GPP. All of the exam questions have displayed mark schemes which are included in the PowerPoint to allow students to immediately assess their understanding. A number of quick quiz competitions as well as guided discussion points are used to introduce the formulae to calculate NPP and N and to recognise the meaning of the components. Once again, this is immediately followed by the opportunity to apply their understanding to selected questions. As well as linking to photosynthesis from earlier in topic 5, this lesson has been specifically planned to challenge students on their understanding of ecosystem terminology from the start of the topic as well as preparing them for the next lesson on the efficiency of biomass and energy transfer