Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1216k+Views

2023k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The products of photosynthesis (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The products of photosynthesis (Edexcel Int. A-level Biology)

(0)
This lesson describes how the products of the light-independent reactions of photosynthesis are used by plants, animals and other organisms. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.4 (ii) of the Edexcel International A-level Biology specification concerning the uses of GP and GALP but as the lesson makes continual references to biological molecules, it can act as a revision tool for a lot of the content of topic 1 and 2. The previous lesson described the light-independent reactions and this lesson builds on that understanding to demonstrate how the intermediates of the cycle, GP and GALP, are used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the GALP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from GALP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose (and fructose and galactose) sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this topic on the structure of the chloroplast and the light-dependent and light-independent reactions of photosynthesis
Light-independent reactions (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Light-independent reactions (Edexcel Int. A-level Biology)

(0)
This lesson describes the light-independent reactions of photosynthesis as the reduction of carbon dioxide using the products of the light-dependent reactions. The detailed PowerPoint and accompanying resources have been designed to cover point 5.4 (i) of the Edexcel International A-level Biology specification and this means that it describes carbon fixation in the Calvin cycle and the roles of GP, GALP, RuBP and RUBISCO. The lesson begins with an prior knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and GALP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RUBISCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to GALP The use of the majority of the GALP in the regeneration of RuBP . A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the GALP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent reactions as well as the upcoming lesson on the products of the light-independent reactions.
Light-dependent reactions of photosynthesis (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Light-dependent reactions of photosynthesis (Edexcel Int. A-level Biology)

(0)
This lesson describes the light-dependent reactions of photosynthesis, including cyclic and non-cyclic photophosphorylation. The detailed PowerPoint and accompanying resources have been designed to cover point 5.3 in unit 4 of the Edexcel International A-level Biology specification and therefore this lesson describes how light energy is trapped by exciting electrons in chlorophyll and the role of these electrons in generating ATP, reducing NADP in photophosphorylation and producing oxygen through photolysis of water. This is a topic which students tend to find difficult so this lesson has been intricately planned to walk them through each of the key reactions in the light-dependent stage. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as cell structure and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic fashion. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take in excess of 2.5 hours of allocated A-level teaching time to complete
Phosphorylation of ADP and hydrolysis of ATP (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Phosphorylation of ADP and hydrolysis of ATP (Edexcel Int. A-level Biology)

(0)
This lesson describes how the hydrolysis of ATP supplies energy for biological processes and how the phosphorylation of ADP requires energy. The PowerPoint has been designed to cover point 5.2 in unit 4 of the Edexcel International A-level Biology specification and also describes how the ATP that is made in the light-dependent stage of photosynthesis, is needed in the light-independent stage. The start of the lesson focuses on the structure of this energy currency and challenges the students to use their knowledge of nucleotides and specifically RNA nucleotides to recognise the components of ATP. As a result, they will learn that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of skeletal muscle contraction are used as this is covered in greater detail in topic 7. The final part of the lesson considers how ATP is formed when ADP is phosphorylated and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively, so that it ties in with the upcoming lessons in topic 5 and 7.
Photosynthesis in the chloroplast (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Photosynthesis in the chloroplast (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the the overall reaction of photosynthesis that takes place in the grana and stroma of the chloroplast. The detailed PowerPoint and accompanying resources have been designed to cover points 5.1 & 5.5 in unit 4 of the Edexcel International A-level Biology specification and also describes the relationship between the structure and role of the chloroplast Students will have some knowledge of photosynthesis from iGCSE and were introduced to the ultrastructure of eukaryotic cells in topics 3 and 4 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled (or introduced) , a range of activities are used to ensure that key details are understood. As the main focus of the lesson is the reaction of photosynthesis, extra time is taken to introduce the details of the light-dependent and light-independent reactions that take place in the grana and stroma respectively. This includes descriptions of the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to GALP in the Calvin cycle of the light-independent reactions. Links to other related topics are also made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch (as originally covered in topic 1) As described above, this lesson has been specifically planned to prepare students for the upcoming lessons that cover the details of specification points 5.3 & 5.4 (i) and (ii).
Isolation leading to speciation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Isolation leading to speciation (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes how isolation reduces gene flow between populations which leads to allopatric and sympatric speciation. The engaging PowerPoint and accompanying resources have been designed to cover point 5.24 of unit 4 of the Edexcel International A-level Biology specification and uses a range of real life examples to increase the relevance and to deepen student understanding The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.
Cell recognition & antigens (AQA A-level Biology)
GJHeducationGJHeducation

Cell recognition & antigens (AQA A-level Biology)

(0)
This lesson describes how the immune system uses molecules on the surface of a cell to identify it, focusing on the identification of pathogens by their antigens. The PowerPoint and accompanying resources which are differentiated are part of the 1st lesson in the series of 7 that cover the content detailed in topic 2.4 of the AQA A-level Biology specification. As this is the first lesson in topic 2.4, it has been specifically planned to introduce a number of key concepts which include phagocytosis, T and B cells, antibodies and memory cells so that students are prepared for upcoming lessons. The lesson begins by challenging the students to use their knowledge of cells to recall the common internal components of a cell before they are informed that all cells also have molecules on their outer membrane. Students will recognise that these molecules are used by the immune system for identification before a quick quiz competition reveals that this allows toxins, abnormal body cells and pathogens to be identified. Moving forwards, the next part of the lesson focuses on the antigens that are found on the outside of a pathogen and links are made to upcoming lesson topics which include: phagocytosis following the identification of a pathogen antigen-presentation by macrophages and dendritic cells production of antibodies which are specific to the antigens the use of antigens in a vaccination program The final task challenges the students to describe and explain how antigen variability will affect disease and disease prevention and this task has been differentiated two ways to allow students of differing abilities to be challenged and supported.
Structure of bacteria & viruses (Edexcel A-level Biology A)
GJHeducationGJHeducation

Structure of bacteria & viruses (Edexcel A-level Biology A)

(0)
This lesson describes the key structural features of viruses and challenges the students to compare them against those of a bacteria as covered in topic 3. The PowerPoint and accompanying resource have primarily been designed to cover point 6.5 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but can be used a revision tool for point 3.4 as students need to recall the structures of a prokaryotic cell. Details of the COVID-19 epidemic are included in the lesson to increase relevance and to help students to understand this biological topic in greater depth. They will understand that a virus’ lack of cell structures results in an non-cellular classification and the fact that it is unable to reproduce without a host is one of the additional reasons that renders it as non-living. The main focus of the lesson is the nucleic acid, the capsid and the attachment proteins that are present in these microorganisms and time is taken to explain how these structures are involved in the infection of a host cell. The lipid membrane is also introduced and links are made to the previous lessons on eukaryotic cells. The final section of the lesson challenges the students to recognise the following prokaryotic cell structures from their descriptions: plasmid pili capsule cell wall flagellum circular DNA ribosomes mesosomes This lesson has been specifically planned to link to the next lesson which covers point 6.6 on the infection of human cells by Mycobacterium tuberculosis and human immunodeficiency virus
TB and HIV (Edexcel A-level Biology A)
GJHeducationGJHeducation

TB and HIV (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how Mycobacterium tuberculosis and Human Immunodeficiency virus infect human cells. The PowerPoint and accompanying resources have been designed to cover point 6.6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and ties in directly with the previous lesson where the structure of bacteria and viruses were compared. The lesson begins by ensuring that students recognise that TB is caused by the infection of a species of bacteria known as Mycobacterium tuberculosis and they will challenged to use their knowledge of scientific classification to recall that this pathogen is found in the mycobacteria genus. At this point, the students are told that the cell walls of this genus contain mycolic acids and later in the lesson they will have to work out that this specialist feature enables this pathogen to survive phagocytosis. A series of exam-style questions will challenge their knowledge of the respiratory and immune systems as they can understand how the bacterium travels to the alveoli where it is engulfed by a macrophage. Key terms like granuloma and necrosis are introduced and the sequence of events that occur following the formation of this aggregate of cells is described. The structure of viruses was covered during the previous lesson, so this next part of the lesson starts by challenging the students to recall the capsid, genetic material in the form of viral RNA and the lipid envelope. At this point, the students are introduced to gp120, the glycoprotein which is exposed on the surface of the lipid envelope, as this structure is critical for the entry of the virus into host cells. Students will annotate a basic diagram of HIV with these four structures which also has gp41 labelled. A quick quiz competition introduces the names of the enzymes found inside the capsid Moving forwards, the main task of this part of the lesson describes how HIV binds to the helper T cells, injects its capsid and integrates its DNA into the host’s genome in order to replicate to form virus particles (virions). Students are guided through the formation of a detailed answer about the mechanism of HIV and have to input key terms and structures where information is missing. Students will learn that the increase in the number of virus particles and a decrease in helper T cells and other immune cells results in infections like TB and by opportunistic pathogens and that this stage is recognised as AIDS
Photosynthesis (Edexcel A-level Biology A)
GJHeducationGJHeducation

Photosynthesis (Edexcel A-level Biology A)

4 Resources
The 4 lesson PowerPoints included in this bundle are highly detailed and along with their accompanying resources, they have been designed to engage and motivate the students whilst the Pearson Edexcel A-level Biology A (Salters Nuffield) specification points concerning photosynthesis are covered. These specification points are 5.5, 5.7, 5.8 (i) & (ii) and 5.9 and these state that students should: Understand the overall reaction of photosynthesis as requiring energy from light to split apart the strong bonds in water molecules, storing the hydrogen in a fuel (glucose) by combining it with carbon dioxide and releasing oxygen into the atmosphere. Understand the light-dependent reactions of photosynthesis including how light energy is trapped by exciting electrons in chlorophyll and the role of these electrons in generating ATP, reducing NADP in photophosphorylation and producing oxygen through photolysis of water Understand the light-independent reactions as reduction of carbon dioxide using the products of the light-dependent reactions (carbon fixation in the Calvin cycle, the role of GP, GALP, RuBP and RUBISCO). Know that the products are simple sugars that are used by plants, animals and other organisms in respiration and the synthesis of new biological molecules (polysaccharides, amino acids, lipids and nucleic acids). Understand the structure of chloroplasts in relation to their role in photosynthesis. If you would like to sample the quality of these lessons, then please download the light-independent reactions lesson as this has been shared for free
The Chloroplast & Photosynthesis (Edexcel A-level Biology A)
GJHeducationGJHeducation

The Chloroplast & Photosynthesis (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the relationship between the structure of the chloroplast and its role in the overall reaction of photosynthesis. The detailed PowerPoint and accompanying resources have been designed to cover points 5.5 & 5.9 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and provide a thorough introduction to the light-dependent and light-independent reactions which are covered in the next 3 lessons. Students will have some knowledge of photosynthesis from GCSE and were introduced to the ultrastructure of eukaryotic cells in topics 3 and 4 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled (or introduced) , a range of activities are used to ensure that key details are understood. As the main focus of the lesson is the reaction of photosynthesis, extra time is taken to introduce the details of the light-dependent and light-independent reactions that take place in the grana and stroma respectively. This includes descriptions of the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to GALP in the Calvin cycle of the light-independent reactions. Links to other related topics are also made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch (as originally covered in topic 1) As described above, this lesson has been specifically planned to prepare students for the upcoming lessons that cover the details of specification points 5.7 & 5.8 (i) and (ii).
Products of the light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Products of the light-independent reactions (Edexcel A-level Biology A)

(0)
This lesson describes how the products of the light-independent reactions of photosynthesis are used by plants, animals and other organisms. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.8 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification concerning the uses of GP and GALP but as the lesson makes continual references to biological molecules, it can act as a revision tool for a lot of the content of topic 1 and 2. The previous lesson described the light-independent reactions and this lesson builds on that understanding to demonstrate how the intermediates of the cycle, GP and GALP, are used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the GALP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from GALP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose (and fructose and galactose) sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this topic on the structure of the chloroplast and the light-dependent and light-independent reactions of photosynthesis
Light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Light-independent reactions (Edexcel A-level Biology A)

(1)
This lesson describes the light-independent reactions of photosynthesis as reduction of carbon dioxide using the products of the light-dependent reactions. The detailed PowerPoint and accompanying resources have been designed to cover point 5.8 (i) of the Pearson Edexcel A-level Biology A (Salters-Nuffield) specification and therefore describes carbon fixation in the Calvin cycle and the roles of GP, GALP, RuBP and RUBISCO). The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and GALP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RUBISCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to GALP The use of the majority of the GALP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the GALP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent reactions as well as the upcoming lesson on the products of the light-independent reactions.
Light-dependent reactions (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Light-dependent reactions (Pearson Edexcel A-level Biology A)

(0)
This lesson describes the light-dependent reactions of photosynthesis, focusing on the link to the light-independent reactions. The detailed PowerPoint and accompanying resources have been designed to cover the details included in point 5.7 of the Edexcel A-level Biology specification and therefore describes how light energy is trapped by exciting electrons in chlorophyll and the role of these electrons in generating ATP, reducing NADP in photophosphorylation and producing oxygen through photolysis of water. This is a topic which students tend to find difficult so this lesson has been intricately planned to walk them through each of the key reactions in the light-dependent stage. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as cell structure and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic fashion. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take in excess of 2.5 hours of allocated A-level teaching time to complete
Topic 2.4: Cell recognition and the immune system (AQA A-level Biology)
GJHeducationGJHeducation

Topic 2.4: Cell recognition and the immune system (AQA A-level Biology)

6 Resources
This bundle contains 6 lesson PowerPoints and their accompanying resources, all of which have been planned at length to contain a wide variety of tasks that will engage and motivate the students whilst the detailed content of topic 2.4 of the AQA A-level Biology specification is covered. The following specification points are covered in this lesson bundle: The identification of cells including pathogens through use of the surface molecules The antigen The effect of antigen variability on disease and disease prevention The phagocytosis of pathogens and the subsequent destruction by lysozymes The response of T lymphocytes to a foreign antigen in the cellular response The role of antigen-presenting cells The role of helper T cells The response of B lymphocytes in the humoral response The definition and structure of an antibody The formation of an antigen-antibody complex and the destruction by agglutination and phagocytosis The roles of plasma cells and memory cells in the primary and secondary responses The use of vaccinations and the concept of herd immunity The differences between active and passive immunity The structure of HIV and its replication in helper T cells How HIV causes the symptoms of AIDS Why antibiotics are ineffective against viruses The use of antibodies in the ELISA test The variety of tasks include exam-style questions with detailed mark schemes, class discussion points of selected questions and quiz competitions to introduce values and terms in a memorable way If you would like to sample the quality of this lesson bundle, then download the roles of B and T lymphocytes lesson and the HIV and AIDS lesson as these have both been uploaded for free
HIV and AIDS (AQA A-level Biology)
GJHeducationGJHeducation

HIV and AIDS (AQA A-level Biology)

(2)
This fully-resourced lesson describes the structure of HIV, its replication inside helper T cells and EXPLAINS how it causes the symptoms of AIDS. The PowerPoint and accompanying resources are part of the 5th lesson in a series of 7 that cover the details of point 2.4 of the AQA A-level Biology specification. The structure of viruses was covered during the lessons in topic 2.1, so this lesson starts by challenging the students to recall the capsid, genetic material in the form of viral RNA and the lipid envelope. At this point, the students are introduced to gp120, the glycoprotein which is exposed on the surface of the lipid envelope, as this structure is critical for the entry of the virus into host cells. Students will annotate a basic diagram of HIV with these four structures which also has gp41 labelled. A quick quiz competition introduces the names of the enzymes found inside the capsid and the students will learn that integrase allows the viral DNA to be integrated into the host’s genome whilst reverse transcriptase catalyses the reaction to form DNA from RNA. A prior knowledge check challenges the students to identify the helper T cells from a description of their function and they are informed that these immune cells have the CD4 glycoprotein on their surface. Moving forwards, the main part of the lesson describes how HIV binds to the helper T cells, injects its capsid and integrates its DNA into the host’s genome in order to replicate to form virus particles (virions). Students are guided through the formation of a detailed answer about the mechanism of HIV and have to input key terms and structures where information is missing. Students will learn that the increase in the number of virus particles and a decrease in helper T cells and other immune cells results in infections like TB and by opportunistic pathogens and that this stage is recognised as AIDS The final part of the lesson challenges the students to explain why antibiotics are ineffective against viruses through a series of exam-style questions and the final task gets them to work as a class where they have to study the replication process once more to suggest drug actions that might be used to treat HIV
Topic 2.3: Transport across cell membranes (AQA A-level Biology)
GJHeducationGJHeducation

Topic 2.3: Transport across cell membranes (AQA A-level Biology)

4 Resources
This lesson bundle contains 4 fully-resourced lessons that use a wide variety of tasks to engage and motivate the students whilst covering the following specification points in topic 2.3 of the AQA A-level Biology specification: The basic structure of cell membranes The arrangement of phospholipids, proteins, glycoproteins and glycolipids in the fluid-mosaic model of membrane structure The role of cholesterol in membranes Simple diffusion and the limitations imposed by the phospholipid bilayer Facilitated diffusion and the role of channel and carrier proteins Osmosis in terms of water potential Active transport Co-transport as illustrated by the absorption in the ileum Hours of planning has gone into the lesson design to ensure that links are made to topics 2.1 & 2.2 as well as to topic 1 (biological molecules) and to differentiate resources where possible to challenge and support all abilities of students If you would like to sample the quality of lessons in this bundle, then download the osmosis lesson which has been shared for free
Active & co-transport (AQA A-level Biology)
GJHeducationGJHeducation

Active & co-transport (AQA A-level Biology)

(1)
This lesson describes how the role of carrier of proteins and ATP in active transport and the co-transport of sodium ions and glucose in the ileum. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 that have been designed to cover the details of point 2.3 of the AQA A-level Biology specification and also includes descriptions of endocytosis and exocytosis The start of the lesson focuses on the structure of this energy currency and challenges the students prior knowledge as they covered ATP in topic 1.6. As a result, they will recall that this molecule consists of adenine, ribose and three phosphate groups and that in order to release the stored energy, ATP must be hydrolysed. Time is taken to emphasise the key point that the hydrolysis of ATP can be coupled to energy-requiring reactions and this leads into a series of exam-style questions where students are challenged on their knowledge of simple and facilitated diffusion to recognise that ATP is needed for active transport. These questions also challenge them to compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The students are then shown how exocytosis is involved in a synapse and in the release of ADH from the pituitary gland during osmoregulation which they will cover in later topics. The final part of the lesson describes the movement of sodium ions and glucose from the ileum to the epithelial cells to the blood using a range of proteins which includes cotransporter proteins and students will learn that similar mechanisms are seen in the phloem and in the proximal convoluted tubule.
ELISA test (AQA A-level Biology)
GJHeducationGJHeducation

ELISA test (AQA A-level Biology)

(1)
This fully-resourced lesson describes how antibodies are used in the enzyme-linked immunosorbent assay (ELISA) test. The PowerPoint and accompanying resources are part of the last lesson in a series of 7 which have been designed to cover the details within point 2.4 of the AQA A-level specification. As the last lesson in this sub-topic, prior knowledge checks are included throughout the lesson which challenge the students on their knowledge of antibodies, immunity and protein structure. The lesson begins by challenging the students to use the details of a poster to recognise that individuals who have recovered from COVID-19 could donate plasma and the antibodies be infused into newly infected individuals. They are then expected to answer a series of exam-style questions where they have to describe the structure of these specific antibodies, recognise this as artificial, passive immunity and describe the potential problems should the virus mutate and the shape of its antigens change. This leads into the introduction of the use of antibodies in other ways, namely the ELISA test. The methodology of this test has been divided into four key steps which students will consider one at a time and then answer further questions about key details such as the immobilisation of the antigen and the removal of proteins and antibodies that have not bound by the washing with the detergent after each step. The lesson focuses on the use of this test for medical diagnosis but other uses such as plant pathology and the detection of allergens is briefly introduced at the end of the lesson.
Coenzymes, cofactors and prosthetic groups (OCR A-level Biology)
GJHeducationGJHeducation

Coenzymes, cofactors and prosthetic groups (OCR A-level Biology)

(0)
This engaging lesson explains why coenzymes, cofactors and prosthetic groups are needed in some enzyme-controlled reactions. The PowerPoint and accompanying resource have been primarily designed to cover point 2.1.4 (e) of the OCR A-level Biology specification but can also be used as a revision lesson for the roles of ions as was covered back in module 2.1.2. The lesson begins with an introduction of the description of a cofactor and students will learn that some are permanently bound to the enzyme whilst others only form temporary associations. A quick quiz competition runs over the course of the lesson and is used to introduce prosthetic groups, mineral ion cofactors and organic coenzymes and zinc ions with carbonic anhydrase, chloride ions with amylase and NAD are used as examples of each type. The lesson has been planned to make links to related topics such as cations, anions, transport of carbon dioxide and respiration which will test students on their prior knowledge as well as prepare them for these topics in modules 3 and 5.