Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Speed and Velocity
GJHeducationGJHeducation

Speed and Velocity

(0)
A fully-resourced lesson which looks at speed and velocity as scalar and vector quantities and then guides students through a range of questions which challenge them to calculate both of these forms of motion. The lesson includes an engaging lesson presentation (44 slides) and differentiated worksheets containing questions. The lesson begins by introducing the terms magnitude and direction so that students can learn how scalar and vector quantities differ. Students will learn that speed is a scalar quantity and velocity is a vector quantity and then be questioned through a crossroads scenario to understand how speed can stay the same but as soon as an object changes direction, the velocity changes. Moving forwards, the students are given the equation to calculate speed and a few simple questions are worked through before they have to do a series of their own questions to find the average speeds for walking, running and cycling. A pair of more difficult speed questions are then attempted which challenge the students to convert from metres per seconds to miles per hour and to calculate the speed of a bicycle by calculating the distance travelled by the sensor on the wheel. This task is differentiated so that students who need some assistance will still be able to access the work. A quiz competition is then used to introduce students to the range of equations which contain velocity and then having been given them, they have to rearrange the formula to make velocity the subject and apply to some further questions. The final task of the lesson brings all the work together in one final competition where students have to use their new-found knowledge of speed and velocity to get TEAM POINTS. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and any misconceptions to be addressed immediately. This lesson has been written for GCSE students and links between the other topics on the curriculum but could be used with KS3 students who are finding the topic of speed too simple and are needing a challenge
Extracting IRON
GJHeducationGJHeducation

Extracting IRON

(0)
An engaging lesson presentation (33 slides) which walks students through the main steps in the extraction of iron from its ore. The lesson begins by challenging the students to recall the reactivity series of metals and specifically the position of iron in relation to carbon so they recognise that it can be extracted by reduction with carbon. Key skills from other Chemistry topics are tested during the lesson such as writing chemical formulae and redox reactions. The rest of the lesson involves a step-by-step guide where students are given a passage and a symbol equation with something missing which they have to complete. This task ensures that students recognise the products, formulae and state symbols at each stage. A number of quiz competitions are used during the lesson to maintain engagement and progress checks have been written into the lesson at regular intervals so that students can assess their understanding. This lesson has been written for GCSE students and fits in nicely with other resources that are uploaded (extracting metals and extracting aluminium).
Rates of reaction
GJHeducationGJHeducation

Rates of reaction

(0)
A fully-resourced lesson which looks at the meaning of the rate of reaction and guides students through calculating both the mean and instantaneous rate of reaction. The lesson includes a concise lesson presentation (19 slides) and a question worksheet which is differentiated two ways. The lesson begins by challenging the students to suggest the missing factor in the rate of reaction equation so they can learn that either the mass of a reactant or a mass of a product could be used. Links are made to practical skills as students will understand that if a product is in the gaseous form, the volume produced within a set time will enable the rate to be calculated. Worked examples are used to show the students how to calculate the mean rate of reaction and then the instantaneous using a tangent. The rest of the lesson involves collecting data from an experiment to calculate the rate of reaction. The questions associated with the practical have been differentiated so students who need assistance can still access the learning. This lesson has been written for GCSE students
Catalysts and the rate of reaction
GJHeducationGJHeducation

Catalysts and the rate of reaction

(0)
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson. This lesson has been designed for GCSE students.
Concentration and the rate of reaction
GJHeducationGJHeducation

Concentration and the rate of reaction

(0)
A fully-resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes a practical-based lesson presentation (19 slides) and associated worksheets containing differentiated questions. The aim of the beginning of the lesson involves getting students to understand the term, concentration, so that they are able to use it accurately in their descriptions. This is a term which is commonly wrongly used by students. Moving forwards, students will carry out a practical to collect valid results so that they can apply their knowledge of concentration to explain a trend. Certain practical skills are challenged during the lesson such as the drawing of a results table to display the results. A worksheet containing questions on the practical is differentiated so that students who need assistance are still able to access the learning. This lesson has been designed for GCSE students but can be used with KS3 students who are learning about chemical reactions.
Alloys
GJHeducationGJHeducation

Alloys

(0)
A fully-resourced lesson which explores how the composition of different alloys is related to their properties and their uses. The lesson includes an engaging and informative lesson presentation (38 slides) and an associated differentiated worksheet. The lesson begins by challenging the students to use their Chemistry knowledge of numbers to come up with the letters of the word alloy. Students are introduced to the definition of this key term and then use a wordsearch to find both the names of the alloys but also the metals that are found in these mixtures. The main aim of this lesson is to get students to understand why alloys are chosen for jobs rather than pure metals and there is a focus on atoms and their arrangement. Students are challenged to use the example of copper and brass to complete a summary passage which is differentiated so that those who need more assistance are still able to access the work. The remainder of the lesson focuses on steel and solder, again exploring how their different features are related to how they are used in modern day life. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and a range of quick quiz competitions will aid engagement. This lesson has been designed for GCSE students but could be used with KS3 students who are looking at mixtures within the atoms and elements topic.
Negative feedback
GJHeducationGJHeducation

Negative feedback

(0)
An informative lesson presentation (20 slides) and associated worksheet that looks at how negative feedback loops act as a final control in homeostatic mechanisms. This is a topic which is poorly understood by students at both GCSE and even A-level, so whilst designing this lesson, the focus was on a few key points and applying it to a range of actual examples. Students will see how a negative feedback loop is used in the control of adrenaline release and temperature regulation and they will also be shown what would happen if this loop didn’t exist. Students are then challenged to apply their knowledge by putting the order of the regulation of metabolic rate into the correct order. The final part of the lesson briefly looks at how positive feedback loops also exist by using the example of the release of oxytocin during birth. This lesson has primarily been designed for GCSE students but is suitable for A-level Biology students too.
Enzymes and enzyme action
GJHeducationGJHeducation

Enzymes and enzyme action

(0)
An engaging and detailed lesson presentation (53 slides) and associated worksheets that looks at the properties and functions of enzymes and explores how the rate of enzyme-controlled reactions changes with changes in conditions. The lesson begins by using a quick quiz competition to introduce the key terms of active site and substrate. Diagrams accompany the important descriptions so that students can visualise how enzymes are specific to a single substrate and will form enzyme-substrate complexes with only them. Emil Fischer’s lock and key hypothesis is briefly discussed so that the correlation between the hypothesis and key terms can be made. Students are shown how most enzymes or groups of enzymes can be named by remembering two rules and they will be tested on this through a second competition. At this point, a progress check is used to allow the students to assess their understanding and ability to bring the information together for enzyme function. The rest of the lesson looks at how changing the temperature and pH will affect the rate of an enzyme controlled reaction. Students will meet the graph shapes that accompany both of these factors and then are helped with the explanation of the trend which is normally poorly done in exam questions. This lesson has been designed for GCSE students.
The HALF-LIFE
GJHeducationGJHeducation

The HALF-LIFE

(0)
An engaging, practical-based lesson presentation (34 slides), accompanied by a practical worksheet and differentiated questions worksheet, which together guide students through the different calculation questions which involve the half-life. The lesson begins by introducing the students to the definition of a half-life and then showing them an example with I-131 so they can visualise how the half-life doesn’t change (and that radioactivity is measured in Bq). Moving forwards, the students will follow the given instructions to create the results to plot a decay curve and will be shown how to use this curve to determine the half-life of an isotope. The remainder of the lesson focuses on the different calculation questions that can be found on exam papers and uses a step by step guide to help them to handle the increasing difficulty. Students will be challenged to apply their new found knowledge to a set of 5 questions and this worksheet has been differentiated two ways so that those who need extra assistance, can still access the learning. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been designed for GCSE students (14 - 16 years old in the UK)
Alpha, beta and gamma radiation
GJHeducationGJHeducation

Alpha, beta and gamma radiation

(0)
An informative lesson presentation (37 slides) and associated question worksheet which looks at the key properties of alpha, beta and gamma radiation. Students are given key pieces of information during the lesson and are then challenged to use their knowledge of related topics such as atomic structure and waves to complete the information table about the types of radiation. By the end of the lesson, students will be able to compare the types of radiation on form, charge, relative mass, penetrating power and equation symbols. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK).
Nuclear FISSION
GJHeducationGJHeducation

Nuclear FISSION

(0)
An informative and student-led lesson presentation (32 slides), accompanied by a reaction diagram and task worksheet, which together look at the key details of nuclear fission reactions. The lesson begins by introducing the students to the name of this reaction and to that of a neutron before they are challenged to recall the properties of this sub-atomic particle as this knowledge plays an important role in their understanding. Moving forwards, students will learn that two isotopes of uranium are involved and will discover and work out how one isotope is changed into the other. Diagrams accompany the theory throughout so that students can visualise how the reaction progresses. They are shown how to work out the two daughter nuclei that are produced in the reaction and how an equation can be written to represent nuclear fission. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be immediately addressed. This lesson has been designed for GCSE students (14 - 16 year olds in the UK)
Neutralisation reactions
GJHeducationGJHeducation

Neutralisation reactions

(0)
A lesson presentation (44 slides), accompanied by a question worksheet, which together looks at the reactants and products of a neutralisation reaction and challenges students to represent these reactions with equations. The lesson begins with a bit of fun as students are asked to read through a scene from the US comedy show and spot that a neutralisation reaction is hidden under the jokes. Students will use their KS3 knowledge to recall that these reactions involve acids and alkalis and moving forwards they will be introduced to a new term, base. The rest of the lesson focuses on writing word and balanced symbol equations for different neutralisation reactions. A step by step guide is used to demonstrate how to work out the name of the salt as well as writing accurate chemical formulae. Finally, students are challenged to apply their new-found knowledge and complete equations for 4 neutralisation reactions and they can assess against the displayed mark schemes. Progress checks have been written into the lesson at regular intervals so that this self-assessment is constant and any misconceptions are quickly addressed. This lesson has been written for GCSE students but could be used with younger students who are looking to extend their knowledge
Temperature and the rate of reaction
GJHeducationGJHeducation

Temperature and the rate of reaction

(0)
A practical based lesson presentation (26 slides) that investigates how increasing the temperature affects the rate of reaction and helps students to explain the trend in the results. Students can either carry out the reaction between sodium thiosulphate and hydrochloric acid or use the results which are provided. The equation to work out the rate of reaction is introduced to the students and they are challenged to plot the results on a line graph. A key term to be used in the explanation is introduced through a quick competition and then students are challenged to explain the trend
Organ transplants
GJHeducationGJHeducation

Organ transplants

(0)
An engaging and informative lesson presentation (40 slides) that looks at the different steps that have to be taken when trying to identify potential donors for organ transplants. Links are made throughout the lesson to related topics such as the human defence systems and blood groups. The lesson begins by challenging the students to use their knowledge of the body’s defences to explain why closely matching tissues is critical when choosing a donor. Moving forwards, students will see how the four blood groups in the ABO system need to receive certain bloods and can only be given to certain others. There is a brief discussion of the HLA antigens and why this needs to be matched. The remainder of the lesson focuses on immuno-suppressant drugs and the advantages and disadvantages to individuals of taking these drugs. Progress checks have been written into the lesson at regular intervals to allow the students to constantly assess their understanding and any misconceptions to be addressed. This lesson has been written for GCSE students
KINETIC ENERGY
GJHeducationGJHeducation

KINETIC ENERGY

(0)
A fully-resourced lesson which focuses on using the kinetic energy equation to calculate energy, mass and speed. The lesson includes a lesson presentation (23 slides) which guides students through the range of calculations and accompanying worksheets which are differentiated. The lesson begins with the students being drip fed the equation so they are clear on the different factors involved. They are challenged to predict whether increasing the mass or increasing the speed will have a greater effect on the kinetic energy before testing their mathematical skills to get results to support their prediction. Moving forwards, students are shown how to rearrange the equation to make the mass the subject of the formula so they can use their skills when asked to calculate the speed. The final task of the lesson brings all of the learning together to tackle a set of questions of increasing difficulty. These questions have been differentiated so that students who need extra assistance can still access the learning. This lesson has been written for GCSE students
Gravitational potential energy
GJHeducationGJHeducation

Gravitational potential energy

(0)
A fully-resourced lesson which includes a concise lesson presentation (16 slides) and accompanying worksheet that guides students through the use of the gravitational potential energy equation to calculate energy, mass and height. The lesson begins by challenging students to work out the factors involved in calculating gravitational potential energy having been given a scenario with some balls on shelves. The students will discover that mass and height affect the energy size and that a third factor, gravity constant, is involved. The rest of the lesson focuses on using the equation to calculate energy, mass and height. In terms of the latter, students have to carry out an engaging task to work out the height that three flags have to be hoisted to during a medal ceremony. This lesson has been written for GCSE students.
Free body diagrams and resultant forces
GJHeducationGJHeducation

Free body diagrams and resultant forces

(0)
An informative lesson which guides students through the commonly misunderstood topic of drawing free body diagrams and using them to calculate resultant forces. The lesson begins by ensuring that students understand that force is a vector quantity and therefore arrows in diagrams can be used to show the magnitude and direction. Drawing free body diagrams is poorly understood and therefore time is taken to go through the three key steps in drawing these diagrams. Each of these steps is demonstrated in a number of examples, so students are able to visualise how to construct the diagrams before they are given the opportunity to apply their new-found knowledge. The rest of the lesson focuses on calculating resultant forces when the forces act in the same plane and also when they are at angles to each other. Again, worked examples are shown before students are challenged to apply. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be addressed. This lesson has been designed for GCSE students
Refraction
GJHeducationGJHeducation

Refraction

(0)
This lesson has been written for GCSE students and aims to ensure that they can explain in detail why light changes direction due to refraction. The key to the explanation is the use of the correct terms in context so the start of the lesson challenges the students to come up with the key words of light, bend, normal, density and speed when given a range of clues. The next part of the lesson works with the students to bring these key terms together to form a definition of refraction. Moving forwards, the relationship between density of a medium and the speed of light through that medium is discussed so that there is a clear understanding of why light bends one way or the other. The next task uses the definition to apply to a practical situation to draw a diagram of light moving from air to glass. The final part of the lesson involves a range of practicals so this topic can be explored further.
ORBITS
GJHeducationGJHeducation

ORBITS

(0)
A concise, fast-paced lesson that looks at the orbits of both natural and artifical satellites. The lesson has been written to build on the student’s knowledge of space from KS3 and add key details such as the gravitational pull between the different celestial objects. Students will learn how the speed of the orbiting object and the gravitational pull ensure that the object remains in orbit and consider what would happen should the speed change. Students are briefly introduced to a number of orbits of artificial satellites as well as the uses. This lesson has been designed for GCSE students
Energy sources
GJHeducationGJHeducation

Energy sources

(0)
This lesson has been designed to explore the range of energy sources which are used on Earth and specifically looks at why an increase in the use of renewable sources is critical for the future. The student’s scientific understanding is challenged at each step of the lesson but there is also a mathematical element running throughout. The lesson begins by challenging the students to predict which energy sources contributed the greatest % when presented with a pie chart. Students cover this topic in other subjects like Geography, so the lesson aims to build on this and consolidate the essential understanding. A range of renewable sources are discussed and key terms such as carbon-neutral taken on further. This lesson has been designed for GCSE students but parts could be used with younger students who are looking at